期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Distinct mononuclear diploid cardiac subpopulation with minimal cell-cell communications persists in embryonic and adult mammalian heart 被引量:1
1
作者 Miaomiao Zhu Huamin Liang +6 位作者 Zhe Zhang Hao Jiang Jingwen Pu xiaoyi hang Qian Zhou Jiacheng Xiang Ximiao He 《Frontiers of Medicine》 SCIE CSCD 2023年第5期939-956,共18页
A small proportion of mononuclear diploid cardiomyocytes(MNDCMs),with regeneration potential,could persist in adult mammalian heart.However,the heterogeneity of MNDCMs and changes during development remains to be illu... A small proportion of mononuclear diploid cardiomyocytes(MNDCMs),with regeneration potential,could persist in adult mammalian heart.However,the heterogeneity of MNDCMs and changes during development remains to be illuminated.To this end,12645 cardiac cells were generated from embryonic day 17.5 and postnatal days 2 and 8 mice by single-cell RNA sequencing.Three cardiac developmental paths were identified:two switching to cardiomyocytes(CM)maturation with close CM–fibroblast(FB)communications and one maintaining MNDCM status with least CM–FB communications.Proliferative MNDCMs having interactions with macrophages and non-proliferative MNDCMs(non-pMNDCMs)with minimal cell–cell communications were identified in the third path.The non-pMNDCMs possessed distinct properties:the lowest mitochondrial metabolisms,the highest glycolysis,and high expression of Myl4 and Tnni1.Single-nucleus RNA sequencing and immunohistochemical staining further proved that the Myl4^(+)Tnni1+MNDCMs persisted in embryonic and adult hearts.These MNDCMs were mapped to the heart by integrating the spatial and single-cell transcriptomic data.In conclusion,a novel non-pMNDCM subpopulation with minimal cell–cell communications was unveiled,highlighting the importance of microenvironment contribution to CM fate during maturation.These findings could improve the understanding of MNDCM heterogeneity and cardiac development,thus providing new clues for approaches to effective cardiac regeneration. 展开更多
关键词 mononuclear diploid cardiomyocytes cell-cell communication cardiac fibroblast single-cell RNA sequencing cardiac regeneration
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部