期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Human ACE2-Functionalized Gold“Virus-Trap”Nanostructures for Accurate Capture of SARS-CoV-2 and Single-Virus SERS Detection 被引量:11
1
作者 Yong Yang Yusi Peng +10 位作者 Chenglong Lin Li Long Jingying Hu Jun He Hui Zeng Zhengren Huang Zhi-Yuan Li Masaki Tanemura Jianlin Shi John R.Lombardi xiaoying luo 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第7期105-117,共13页
The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an ... The current COVID-19 pandemic urges the extremely sensitive and prompt detection of SARS-CoV-2 virus.Here,we present a Human Angiotensin-converting-enzyme 2(ACE2)-functionalized gold“virus traps”nanostructure as an extremely sensitive SERS biosensor,to selectively capture and rapidly detect S-protein expressed coronavirus,such as the current SARS-CoV-2 in the contaminated water,down to the single-virus level.Such a SERS sensor features extraordinary 106-fold virus enrichment originating from high-affinity of ACE2 with S protein as well as“virus-traps”composed of oblique gold nanoneedles,and 109-fold enhancement of Raman signals originating from multi-component SERS effects.Furthermore,the identification standard of virus signals is established by machine-learning and identification techniques,resulting in an especially low detection limit of 80 copies mL^(−1) for the simulated contaminated water by SARS-CoV-2 virus with complex circumstance as short as 5 min,which is of great significance for achieving real-time monitoring and early warning of coronavirus.Moreover,here-developed method can be used to establish the identification standard for future unknown coronavirus,and immediately enable extremely sensitive and rapid detection of novel virus. 展开更多
关键词 SERS SARS-CoV-2 Human ACE2 “Virus-trap”nanostructure Single-virus detection
下载PDF
Charge‑Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS‑CoV‑2 S Protein Detection 被引量:7
2
作者 Yusi Peng Chenglong Lin +9 位作者 Li Long Tanemura Masaki Mao Tang Lili Yang Jianjun Liu Zhengren Huang Zhiyuan Li xiaoying luo John RLombardi Yong Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第3期177-193,共17页
The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply sem... The outbreak of coronavirus disease 2019 has seriously threatened human health.Rapidly and sensitively detecting SARSCoV-2 viruses can help control the spread of viruses.However,it is an arduous challenge to apply semiconductor-based substrates for virus SERS detection due to their poor sensitivity.Therefore,it is worthwhile to search novel semiconductor-based substrates with excellent SERS sensitivity.Herein we report,for the first time,Nb2C and Ta2C MXenes exhibit a remarkable SERS enhancement,which is synergistically enabled by the charge transfer resonance enhancement and electromagnetic enhancement.Their SERS sensitivity is optimized to 3.0×10^6 and 1.4×10^6 under the optimal resonance excitation wavelength of 532 nm.Additionally,remarkable SERS sensitivity endows Ta2C MXenes with capability to sensitively detect and accurately identify the SARS-CoV-2 spike protein.Moreover,its detection limit is as low as 5×10^−9 M,which is beneficial to achieve real-time monitoring and early warning of novel coronavirus.This research not only provides helpful theoretical guidance for exploring other novel SERS-active semiconductor-based materials but also provides a potential candidate for the practical applications of SERS technology. 展开更多
关键词 Nb2C and Ta2C MXenes SERS sensitivity PICT resonance SARS-CoV-2 S protein
下载PDF
Visualized SERS Imaging of Single Molecule by Ag/ Black Phosphorus Nanosheets 被引量:1
3
作者 Chenglong Lin Shunshun Liang +8 位作者 Yusi Peng Li Long Yanyan Li Zhengren Huang Nguyen Viet Long xiaoying luo Jianjun Liu Zhiyuan Li Yong Yang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第5期47-61,共15页
Single-molecule detection and imaging are of great value in chemical analysis,biomarker identification and other trace detection fields.However,the localization and visualization of single molecule are still quite a c... Single-molecule detection and imaging are of great value in chemical analysis,biomarker identification and other trace detection fields.However,the localization and visualization of single molecule are still quite a challenge.Here,we report a special-engineered nanostructure of Ag nanoparticles embedded in multi-layer black phosphorus nanosheets(Ag/BP-NS)synthesized by a unique photoreduction method as a surfaceenhanced Raman scattering(SERS)sensor.Such a SERS substrate features the lowest detection limit of 10^(–20) mol L^(−1) for R6G,which is due to the three synergistic resonance enhancement of molecular resonance,photoinduced charge transfer resonance and electromagnetic resonance.We propose a polarization-mapping strategy to realize the detection and visualization of single molecule.In addition,combined with machine learning,Ag/BP-NS substrates are capable of recognition of different tumor exosomes,which is meaningful for monitoring and early warning of the cancer.This work provides a reliable strategy for the detection of single molecule and a potential candidate for the practical bio-application of SERS technology. 展开更多
关键词 Black phosphorus Single molecule SERS EXOSOME Machine learning
下载PDF
蛋白核小球藻高效同化硝态氮联产微藻蛋白 被引量:9
4
作者 骆小英 陈俊辉 魏东 《生物工程学报》 CAS CSCD 北大核心 2020年第6期1150-1161,共12页
本研究旨在建立利用微藻去除高浓度废水中硝酸根并转化为藻蛋白的创新技术。先在摇瓶中研究了培养模式和光照模式对于混养蛋白核小球藻的生物量产量、硝酸根同化速率和藻蛋白产量的影响,随后在5 L光发酵罐中成功进行了放大验证。结果表... 本研究旨在建立利用微藻去除高浓度废水中硝酸根并转化为藻蛋白的创新技术。先在摇瓶中研究了培养模式和光照模式对于混养蛋白核小球藻的生物量产量、硝酸根同化速率和藻蛋白产量的影响,随后在5 L光发酵罐中成功进行了放大验证。结果表明,在摇瓶培养中,不回流培养基的补料分批培养是最佳培养模式,可获得最高生物量产量为35.95 g/L,硝酸根平均同化速率为2.06 g/(L·d),藻蛋白含量可高达42.44%干重;采用阶梯式增加光强的光照模式,能显著提高细胞比生长速率,最高达到0.65 d–1。在5 L光发酵罐中连续培养128 h,最高生物量产量和硝酸根平均同化速率分别达到66.22 g/L和4.38 g/(L·d),最高藻蛋白含量可达干重的47.13%。本研究能为高效处理工业废硝酸或高浓度硝酸盐废水提供微藻光发酵技术,基于微藻的生物转化过程可联产高蛋白微藻生物质,有利于实现这类废水资源化利用、变废为宝。 展开更多
关键词 蛋白核小球藻 补料分批培养 硝态氮 蛋白质 光发酵
原文传递
N-doped carbon supported Pd catalysts for N-formylation of amines with CO2/H2 被引量:6
5
作者 xiaoying luo Hongye Zhang +5 位作者 Zhengang Ke Cailing Wu Shien Guo Yunyan Wu Bo Yu Zhimin Liu 《Science China Chemistry》 SCIE EI CAS CSCD 2018年第6期725-731,共7页
Using mesoporous N-doped carbons(NCs)derived from glucose and melamine as the supports,a series of Pd/NC catalysts were prepared,in which Pd nanoparticles with average size<2.0 nm were uniformly distributed on the ... Using mesoporous N-doped carbons(NCs)derived from glucose and melamine as the supports,a series of Pd/NC catalysts were prepared,in which Pd nanoparticles with average size<2.0 nm were uniformly distributed on the supports.It was indicated that the resultant Pd/NC catalysts were effective for N-formylation of amines with CO_2and H_2in ethanol without any additives.Especially,the catalyst Pd/NC-800-6.9%containing quaternary N showed the best performance,affording a series of formylamides in good or even excellent yields.Further investigation reveals that the interaction between the Pd nanoparticles and quaternary nitrogen in the NC support was responsible for the good performance of the catalyst. 展开更多
关键词 三聚氰胺 催化剂 PD 平均尺寸 葡萄糖 显示
原文传递
Growth suppression of colorectal cancer expressing S492R EGFR by monoclonal antibody CH12 被引量:1
6
作者 Qiongna Dong Bizhi Shi +4 位作者 Min Zhou Huiping Gao xiaoying luo Zonghai Li Hua Jiang 《Frontiers of Medicine》 SCIE CAS CSCD 2019年第1期83-93,共11页
Colorectal cancer (CRC) is a common malignant tumor in the digestive tract, and 30%—85% of CRCs express epidermal growth factor receptors (EGFRs). Recently, treatments using cetuximab, also named C225, an anti-EGFR m... Colorectal cancer (CRC) is a common malignant tumor in the digestive tract, and 30%—85% of CRCs express epidermal growth factor receptors (EGFRs). Recently, treatments using cetuximab, also named C225, an anti-EGFR monoclonal antibody, for CRC have been demonstrated to cause an S492R mutation in EGFR. However, little is known about the biological function of S492R EGFR. Therefore, we attempted to elucidate its biological function in CRC cells and explore new treatment strategies for this mutant form. Our study indicated that EGFR and S492R EGFR accelerate the growth of CRC cells in vitro and in vivo and monoclonal antibody CH12, which specifically recognizes an EGFR tumor-specific epitope, can bind efficiently to S492R EGFR. Furthermore, mAb CH12 showed significantly stronger growth suppression activities and induced a more potent antibody-dependent cellular cytotoxicity effect on CRC cells bearing S492R EGFR than mAb C225.mAb CH12 obviously suppressed the growth of CRC xenografts with S492R EGFR mutations in vivo. Thus, mAb CH12 may be a promising therapeutic agent in treating patients with CRC bearing an S492R EGFR mutation. 展开更多
关键词 S492R EGFR ECTODOMAIN mutation COLORECTAL cancer MAB CH12 immunnotherapy
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部