期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
High-performance flexible all-solid-state asymmetric supercapacitors based on binder-free MXene/cellulose nanofiber anode and carbon cloth/polyaniline cathode 被引量:1
1
作者 xiaoyu bi Meichun Li +8 位作者 Guoqiang Zhou Chaozheng Liu Runzhou Huang Yang Shi Ben bin Xu Zhanhu Guo Wei Fan Hassan Algadi Shengbo Ge 《Nano Research》 SCIE EI CSCD 2023年第5期7696-7709,共14页
The search for wearable electronics has been attracted great efforts,there is an ever-growing demand for all-solid-state flexible energy storage devices.However,it is a challenge to obtain both positive and negative e... The search for wearable electronics has been attracted great efforts,there is an ever-growing demand for all-solid-state flexible energy storage devices.However,it is a challenge to obtain both positive and negative electrodes with excellent mechanical strength and match positive and negative charges to achieve high energy densities and operate voltages to satisfy practical application requirements.Here,flexible MXene(Ti_(3)C_(2)Tx)/cellulose nanofiber(CNF)composite film negative electrodes(MCNF)were fabricated with a vacuum filtration method,as well as positive electrodes(CP)by combining polyaniline(PANI)with carbon cloth(CC)using an in-situ polymerization method.Both positive and negative free-standing electrodes exhibited excellent electrochemical behavior and bendable/foldable flexibility.As a result,the all-pseudocapacitance asymmetric device of MCNF//CP assembled with charge-matched between anode and cathode achieves an extended voltage window of 1.5 V,high energy density of 30.6 Wh·kg^(−1)(1211 W·kg^(−1)),86%capacitance retention after 5000 cycles,the device maintains excellent bendability,simultaneously.This work will pave the way for the development of all-pseudocapacitive asymmetric supercapacitors(ASC)with simultaneously preeminent mechanical properties,high energy density,wide operating voltage window. 展开更多
关键词 MXene cellulose nanofiber POLYANILINE asymmetric supercapacitors
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部