Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO_(2) biomethanation and can use near-infrared light sources,overcoming the limitations of conventional photosynthetic systems....Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO_(2) biomethanation and can use near-infrared light sources,overcoming the limitations of conventional photosynthetic systems.The current study constructed a biohybrid system that deposited CdS nanoparticles on R.palustris.This biohybrid system broadens the capture of sustainable solar energy,achieving a 155 nmol-mL-biological CH,production under full visible light irradiation,13.4-fold of that by the pure R.palustris.The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain,nitrogenase,nanofilaments,and redox stress defense was activated.Accordingly,we attributed the much-enhanced CO_(2) biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles.Our discovery offers insight and a promising strategy forimproving the current CO_(2)-CH_(4) biomanufacturing system.展开更多
基金supported by the 2022 Carbon Dafeng and Carbon Neutral Science and Technology Innovation Special Fund in Jiangsu Province(Grant No.BK20220003)the National Natural Science Foundation of China(Grant No.32371538)+2 种基金the Special Funds for Jiangsu Provincial Science and technology plan(Grant No.BZ2022052)the Jiangsu Agriculture Science and Technology Innovation Fund(Grant No.CX(21)2015)the Jiangsu Synergetic Innovation Center for Advanced Bio-Manufacture(Grant No.XTD2204).
文摘Engineered photosynthetic bacterium Rhodo-pseudomonas palustris is excellent at one-step CO_(2) biomethanation and can use near-infrared light sources,overcoming the limitations of conventional photosynthetic systems.The current study constructed a biohybrid system that deposited CdS nanoparticles on R.palustris.This biohybrid system broadens the capture of sustainable solar energy,achieving a 155 nmol-mL-biological CH,production under full visible light irradiation,13.4-fold of that by the pure R.palustris.The transcriptome profiles revealed that gene expression related to photosynthetic electron transfer chain,nitrogenase,nanofilaments,and redox stress defense was activated.Accordingly,we attributed the much-enhanced CO_(2) biomethanation in the biohybrid system to the remarkable increase in the intracellular reducing power and the stronger rigidity of the cells assisted by photoexcited electrons from CdS nanoparticles.Our discovery offers insight and a promising strategy forimproving the current CO_(2)-CH_(4) biomanufacturing system.