NiS2 has become a research hotspot of anode materials for Na-ion batteries due to its high theoretical specific capacity.However,the volume effect,the dissolution of polysulfide intermediates and the low conductivity ...NiS2 has become a research hotspot of anode materials for Na-ion batteries due to its high theoretical specific capacity.However,the volume effect,the dissolution of polysulfide intermediates and the low conductivity during the charge/discharge process lead to the low specific capacity and poor cycling stability.NiS2/rGO nanocomposite was prepared by a facile two-step process:GO was prepared by modified Hummers method,and then NiS2/rGO nanocomposite was synthesized by L-cys assisted hydrothermal method.NiS2/rGO nanocomposite shows excellent cycle performance and rate performance,which could be attributed to the mesoporous structure on the graphene skeleton with high conductivity.Besides,the chemical constraint of a unique S—O bond on NiS2 could inhibit the dissolution of intermediates and the loss of irreversible capacity.展开更多
基金support from the National Natural Science Foundation of China(NSFC,No.51171033)The Fundamental Research Funds for the Central Universities(No.DUT19LAB29)。
文摘NiS2 has become a research hotspot of anode materials for Na-ion batteries due to its high theoretical specific capacity.However,the volume effect,the dissolution of polysulfide intermediates and the low conductivity during the charge/discharge process lead to the low specific capacity and poor cycling stability.NiS2/rGO nanocomposite was prepared by a facile two-step process:GO was prepared by modified Hummers method,and then NiS2/rGO nanocomposite was synthesized by L-cys assisted hydrothermal method.NiS2/rGO nanocomposite shows excellent cycle performance and rate performance,which could be attributed to the mesoporous structure on the graphene skeleton with high conductivity.Besides,the chemical constraint of a unique S—O bond on NiS2 could inhibit the dissolution of intermediates and the loss of irreversible capacity.