期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Structure and Stability of TiC/γ Interface inFe-Cr-Ni Base Composite
1
作者 xidong hui Yuansheng YANG and Xnqiang WU (Institute of Metal Research, Chinese Academia of Science, Shenyang 110015, China)Zhifu WANG(Shandong University of Technology, Jinan 250061, China)Xichen CHEN(Institute of Physics, Chinese Academia of Science, Be 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1999年第2期151-154,共4页
The morphology. orientation relationship and stability of TiC/γ interface in Fe-Cr-Ni base composite synthesized with a liquid state in-situ process have been studied. The TiC/γ interface in as-cast sample is of coh... The morphology. orientation relationship and stability of TiC/γ interface in Fe-Cr-Ni base composite synthesized with a liquid state in-situ process have been studied. The TiC/γ interface in as-cast sample is of coherent feature. Its orientation relationship is (020)γ//(220)TiC, [001]γ||[001]TiC. During the aging at 1473 K, the TiC/γ interface may dissolve in matrix and lamellar M23C6 compound may precipitate from γ-matrix. 展开更多
关键词 Structure and Stability of TiC BASE Cr Interface inFe-Cr-Ni Base Composite Ni
下载PDF
Enhanced dynamic deformability and strengthening effect via twinning and microbanding in high density NiCoFeCrMoW high-entropy alloys 被引量:1
2
作者 Xuli Liu Yidong Wu +7 位作者 Yansong Wang Jinbin Chen Rui Bai Lei Gao Zhe Xu William Yi Wang Chengwen Tan xidong hui 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第32期164-176,共13页
High density alloys with enhanced deformability and strength are urgently required in energy,military and nuclear industries,etc.In this work,we present a new kind of NiCoFeCrMoW high entropy alloys(HEAs)which possess... High density alloys with enhanced deformability and strength are urgently required in energy,military and nuclear industries,etc.In this work,we present a new kind of NiCoFeCrMoW high entropy alloys(HEAs)which possess higher densities and sound velocities than copper.We systematically investigate the phase structure,quasi-static tensile,dynamic compression and related deformation mechanism of these HEAs.It is shown that single FCC or FCC+μdual phases were formed in the HEAs depending on Mo and W content and annealing temperature.Excellent quasi-static tensile and dynamic compression properties have been achieved for these HEAs,e.g.Ni_(30)Co_(30)Fe_(21)Cr_(10)W_(9)HEA annealed at 1573 K exhibited a yield and ultimate tensile strength and elongation of~364 MPa,~866 MPa and~32%,respectively,in quasi-static test;a yield strength of~710 MPa and no fracture under the dynamic strain rate of 4100 s^(-1).Superior strain rate sensitivity(SRS)of yield strength than that of previously reported FCC HEAs have been evidenced.The dynamic stress-strain constitutive relation can be described by the modified Johnson-Cook model.As for the dynamic deformation mechanism,it is envisaged that the regulation of stacking fault energy and Peierls barrier in current HEAs resulted in occurrences of abundant nanoscale deformation twins and microbands during high strain rate compression.The synergistic microbanding and twinning effectively contributes to the enhanced dynamic deformability and strengthening effect.Besides,the interactions of dislocations with precipitates,stacking faults(SFs)with twins,and between SFs also contribute to extraordinary work-hardening capacity. 展开更多
关键词 High-entropy alloys Mechanical property Impact behavior Constitutive modeling Dynamic plastic deformation
原文传递
High-throughput investigations of configurational-transformation-dominated serrations in CuZr/Cu nanolaminates
3
作者 William Yi Wang Bin Gana +15 位作者 Deye Lin Jun Wang Yiguang Wang Bin Tang Hongchao Kou Shunli Shang Yi Wang Xingyu Gao Haifeng Song xidong hui Laszlo J.Kecskes Zhenhai Xia Karin A.Dahmen Peter K.Liaw Jinshan Lia Zi-Kui Liu 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2020年第18期192-199,共8页
Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformati... Metallic amorphous/crystalline(A/C)nanolaminates exhibit excellent ductility while retaining their high strength.However,the underlying physical mechanisms and the resultant structural changes during plastic deformation still remain unclear.In the present work,the structure-property relationship of CuZr/Cu A/C nanolaminates is established through integrated high-throughput micro-compression tests and molecular dynamics simulations together with high-resolution transmission electron microcopy.The serrated flow of nanolaminates results from the formation of hexagonal-close-packed(HCP)-type stacking faults and twins inside the face-centered-cubic(FCC)Cu nano-grains,the body-centered-cubic(BCC)-type ordering at their grain boundaries,and the crystallization of the amorphous CuZr layers.The serration behavior of CuZr/Cu A/C nanolaminates is determined by several factors,including the formation of dense dislocation networks from the multiplication of initial dislocations that formed after yielding,weak-spots-related configurational-transitions and shear-transition-zone activities,and deformation-induced devitrification.The present work provides an insight into the heterogeneous deformation mechanism of A/C nanolaminates at the atomic scale,and mechanistic base for the microstructural design of self-toughening metallic-glass(MG)-based composites and A/C nanolaminates. 展开更多
关键词 NANOLAMINATES SERRATION Configurational transformation Molecular dynamics Metallic glass
原文传递
Revealing the Local Microstates of Fe–Mn–Al Medium Entropy Alloy:A Comprehensive First-principles Study
4
作者 Ying Zhang William Yi Wang +7 位作者 Chengxiong Zou Rui Bai Yidong Wu Deye lin Jun Wang xidong hui Xiubing Liang Jinshan Li 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2021年第11期1492-1502,共11页
Entropy-stabilized multi-component alloys have been considered to be prospective structural materials attributing to their impressive mechanical and functional properties.The local chemical complexions,microstates and... Entropy-stabilized multi-component alloys have been considered to be prospective structural materials attributing to their impressive mechanical and functional properties.The local chemical complexions,microstates and configurational transformations are essential to reveal the structure–property relationship,thus,to promote the development of advanced multicomponent alloys.In the present work,effects of local lattice distortion(LLD)and microstates of various configurations on the equilibrium volume(V0),total energy,Fermi energy,magnetic moment(μMag)and electron work function(Φ)and bonding structures of the Fe–Mn–Al medium entropy alloy(MEA)have been investigated comprehensively by first-principles calculations.It is found that theΦandμMag of those MEA are proportional to the V 0,which is dominated by lattice distortion.In terms of bonding charge density,both the strengthened clusters or the so-called short-range order structures and the weakly bonded spots or weak spots are characterized.While the presence of weakly bonded Al atoms implies a large LLD/mismatch,the Fe–Mn bonding pairs result in the formation of strengthened clusters,which dominate the local microstates and the configurational transitions.The variations ofμMag are associated with the enhancement of the nearest neighbor magnetic Fe and Mn atoms,attributing to the LLD caused by Al atoms,the local changes in the electronic structures.This work provides an atomic and electronic insight into the microstate-dominated solid-solution strengthening mechanism of Fe–Mn–Al MEA. 展开更多
关键词 Medium entropy alloy Bonding charge density Magnetic moment Microstates
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部