期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Graph-enhanced neural interactive collaborative filtering
1
作者 xie chengyan Dong Lu 《Journal of Southeast University(English Edition)》 EI CAS 2022年第2期110-117,共8页
To improve the training efficiency and recommendation accuracy in cold-start interactive recommendation systems,a new graph structure called item similarity graph is proposed on the basis of real data from a public da... To improve the training efficiency and recommendation accuracy in cold-start interactive recommendation systems,a new graph structure called item similarity graph is proposed on the basis of real data from a public dataset.The proposed graph is built from collaborative interactions and a deep reinforcement learning-based graph-enhanced neural interactive collaborative filtering(GE-ICF)model.The GE-ICF framework is developed with a deep reinforcement learning framework and comprises an embedding propagation layer designed with graph neural networks.Extensive experiments are conducted to investigate the efficiency of the proposed graph structure and the superiority of the proposed GE-ICF framework.Results show that in cold-start interactive recommendation systems,the proposed item similarity graph performs well in data relationship modeling,with the training efficiency showing significant improvement.The proposed GE-ICF framework also demonstrates superiority in decision modeling,thereby increasing the recommendation accuracy remarkably. 展开更多
关键词 interactive recommendation systems COLD-START graph neural network deep reinforcement learning
下载PDF
倒置误差组合优化算法的沪深300指数预测研究
2
作者 谢承燕 方宏彬 +1 位作者 郭梦洁 杨梦卓 《福建商学院学报》 2020年第6期14-22,共9页
针对多变量预测股指开盘价问题,为了提高预测精度,提出一种基于倒置误差的GXS组合模型,对沪深300指数每日开盘价进行回归预测。运用网格搜索(GridSearchCV)算法和10折交叉验证法,对极度梯度提升树(XGBoost)模型与基于径向基RBF核函数的... 针对多变量预测股指开盘价问题,为了提高预测精度,提出一种基于倒置误差的GXS组合模型,对沪深300指数每日开盘价进行回归预测。运用网格搜索(GridSearchCV)算法和10折交叉验证法,对极度梯度提升树(XGBoost)模型与基于径向基RBF核函数的支持向量回归(SVR)模型进行参数优化,取修正的预测误差进行误差倒数法赋权,搭建GXS组合模型。实证结果表明,基于修正误差MAE赋权的GXS组合模型对沪深300指数开盘价预测效果最优。 展开更多
关键词 沪深300指数 XGBoost模型 SVR模型 误差倒数法 回归预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部