A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and...A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.展开更多
基金National Science Foundation of China(Grant No.10772142)National Natural Science Key Foundation of China(Grant No.10832002)the Fundamental Research Funds for the Central Universities
文摘A hybrid calibration approach based on support vector machines (SVM) is proposed to characterize nonlinear cross coupling of multi-dimensional transducer. It is difficult to identify these unknown nonlinearities and crosstalk just with a single conventional calibration approach. In this paper, a hybrid model comprising calibration matrix and SVM model for calibrating linearity and nonlinearity respectively is built up. The calibration matrix is determined by linear artificial neural network (ANN), and the SVM is used to compensate for the nonlinear cross coupling among each dimension. A simulation of the calibration of a multi-dimensional sensor is conducted by the SVM hybrid calibration method, which is then utilized to calibrate a six-component force/torque transducer of wind tunnel balance. From the calibrating results, it can be indicated that the SVM hybrid calibration method has improved the calibration accuracy significantly without increasing data samples, compared with calibration matrix. Moreover, with the calibration matrix, the hybrid model can provide a basis for the design of transducers.