期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Fine mapping and validation of a stable QTL for thousand-kernel weight in wheat(Triticum aestivum L.)
1
作者 Deyuan Meng Aamana Batool +18 位作者 Yazhou Xuan Ruiqing Pan Na Zhang Wei Zhang Liya Zhi Xiaoli Ren Wenqing Li Jijie Li Yanxiao Niu Shuzhi Zheng Jun Ji Xiaoli Shi Lei Wang Hongqing Ling Chunhua Zhao Fa Cui xigang liu Junming Li Liqiang Song 《The Crop Journal》 SCIE CSCD 2023年第5期1491-1500,共10页
Thousand-kernel weight(TKW)is a measure of grain weight,a target of wheat breeding.The object of this study was to fine-map a stable quantitative trait loci(QTL)for TKW and identify its candidate gene in a recombinant... Thousand-kernel weight(TKW)is a measure of grain weight,a target of wheat breeding.The object of this study was to fine-map a stable quantitative trait loci(QTL)for TKW and identify its candidate gene in a recombinant inbred line(RIL)population derived from the cross of Kenong 9204(KN9204)and Jing411(J411).On a high-density genetic linkage map,24,26 and 25 QTL were associated with TKW,kernel length(KL),and kernel width(KW),respectively.A major and stable QTL,QTkw-2D,was mapped to an8.3 cM interval on chromosome arm 2DL.By saturation of polymorphic markers in its target region,QTkw-2D was confined to a 9.13 Mb physical interval using a secondary mapping population derived from a residually heterozygous line(F6:7).This interval was further narrowed to 2.52 Mb using QTkw-2D near-isogenic lines(NILs).NILs~(KN9204)had higher fresh and dry weights than NILsJ411at various grain-filling stages.The TKW and KW of NILs~(KN9204)were much higher than those of NILsJ411in field trials.By comparison of both DNA sequence and expression between KN9204 and J411,TraesCS2D02G460300.1(TraesKN2D01HG49350)was assigned as a candidate gene for QTkw-2D.This was confirmed by RNA sequencing(RNA-seq)of QTkw-2D NILs.These results provide the basis of map-based cloning of QTkw-2D,and DNA markers linked to the candidate gene may be used in marker-assisted selection. 展开更多
关键词 WHEAT Thousand-kernel weight Fine mapping Candidate gene
下载PDF
Boosting wheat functional genomics via an indexed EMS mutant library of KN9204 被引量:1
2
作者 Dongzhi Wang Yongpeng Li +21 位作者 Haojie Wang Yongxin Xu Yiman Yang Yuxin Zhou Zhongxu Chen Yuqing Zhou Lixuan Gui Yi Guo Chunjiang Zhou Wenqiang Tang Shuzhi Zheng Lei Wang Xiulin Guo Yingjun Zhang Fa Cui Xuelei Lin Yuling Jiao Yuehui He Junming Li Fei He xigang liu Jun Xiao 《Plant Communications》 SCIE CSCD 2023年第4期58-76,共19页
A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency... A better understanding of wheat functional genomics can improve targeted breeding for better agronomic traits and environmental adaptation.However,the lack of gene-indexed mutants and the low transformation efficiency of wheat limit in-depth gene functional studies and genetic manipulation for breeding.In this study,we created a library for KN9204,a popular wheat variety in northern China,with a reference genome,transcriptome,and epigenome of different tissues,using ethyl methyl sulfonate(EMS)mutagenesis.This library contains a vast developmental diversity of critical tissues and transition stages.Exome capture sequencing of 2090 mutant lines using KN9204 genome-designed probes revealed that 98.79%of coding genes had mutations,and each line had an average of 1383 EMS-type SNPs.We identified new allelic variations for crucial agronomic trait-related genes such as Rht-D1,Q,TaTB1,and WFZP.We tested 100 lines with severemutations in 80 NAC transcription factors(TFs)under drought and salinity stress and identified 13 lines with altered sensitivity.Further analysis of three lines using transcriptome and chromatin accessibility data revealed hundreds of direct NAC targets with altered transcription patterns under salt or drought stress,including SNAC1,DREB2B,CML16,and ZFP182,factors known to respond to abiotic stress.Thus,we have generated and indexed a KN9204 EMS mutant library that can facilitate functional genomics research and offer resources for genetic manipulation of wheat. 展开更多
关键词 WHEAT exome capture sequencing EMS mutagenesis functional genomics
原文传递
BZR1 Family Transcription Factors Function Redundantly and Indispensably in BR Signaling but Exhibit BRI1-Independent Function in Regulating Anther Development in Arabidopsis 被引量:11
3
作者 Lian-Ge Chen Zhihua Gao +6 位作者 Zhiying Zhao Xinye liu Yongpeng Li Yuxiang Zhang xigang liu Yu Sun Wenqiang Tang 《Molecular Plant》 SCIE CAS CSCD 2019年第10期1408-1415,共8页
BRASSINAZOLE-RESISTANT 1 family proteins(BZRs)are central transcription factors that govern brassinosteroid(BR)-regulated gene expression and plant growth.However,it is unclear whether there exists a BZR-independent p... BRASSINAZOLE-RESISTANT 1 family proteins(BZRs)are central transcription factors that govern brassinosteroid(BR)-regulated gene expression and plant growth.However,it is unclear whether there exists a BZR-independent pathway that mediates BR signaling.In this study,we found that disruption of all BZRs in Arabidopsis generated a hextuple mutant(bzr-h)displaying vegetative growth phenotypes that were almost identical to those of the null mutant of three BR receptors,bri1brl1brl3(bri-t).By RNA sequencing,we found that global gene expression in bzr-h was unaffected by 2 h of BR treatment.The anthers of bzr-h plants were loculeless,but a similar phenotype was not observed in bri-t,suggesting that BZRs have a BR signaling-independent regulatory role in anther development.By real-time PCR and in situ hybridization,we found that the expression of SPOROCYTELESS(SPL),which encodes a transcription factor essential for anther locule development,was barely detectable in bzr-h,suggesting that BZRs regulate locule development by affecting SPL expression.Our findings reveal that BZRs are indispensable transcription factors required for both BR signaling and anther locule development,providing new insight into the molecular mechanisms underlying the microsporogenesis in Arabidopsis. 展开更多
关键词 BRASSINOSTEROID BZR1 ANTHER development SPL gene expression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部