期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Upper-Bound Limit Analysis of the Multi-Layer Slope Stability and Failure Mode Based on Generalized Horizontal Slice Method
1
作者 Huawei Zhang Changdong Li +5 位作者 Wenqiang Chen Ni Xie Guihua Wang Wenmin Yao xihui jiang Jingjing Long 《Journal of Earth Science》 SCIE CAS CSCD 2024年第3期929-940,共12页
Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent ... Multi-layer slopes are widely found in clay residue receiving fields.A generalized horizontal slice method(GHSM)for assessing the stability of multi-layer slopes that considers the energy dissipation between adjacent horizontal slices is presented.In view of the upper-bound limit analysis theory,the energy equation is derived and the ultimate failure mode is generated by comparing the sliding surface passing through the slope toe(mode A)with that below(mode B).In addition,the influence of the number of slices on the stability coefficients in the GHSM is studied and the stable value is obtained.Compared to the original method(Chen’s method),the GHSM can acquire more precise results,which takes into account the energy dissipation in the inner sliding soil mass.Moreover,the GHSM,limit equilibrium method(LEM)and numerical simulation method(NSM)are applied to analyze the stability of a multi-layer slope with different slope angles and the results of the safety factor and failure mode are very close in each case.The ultimate failure modes are shown to be mode B when the slope angle is not more than 28°.It illustrates that the determination of the ultimate sliding surface requires comparison of multiple failure modes,not only mode A. 展开更多
关键词 stability and failure mode slope stability generalized horizontal slice method upperbound limit analysis energy dissipation geotechnical engineering.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部