期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hyperbranched phthalocyanine enabling black-phase formamidinium perovskite solar cells processing and operating in humidity open air 被引量:1
1
作者 Rong Li Jiale Ding +6 位作者 xijiao mu Yifei Kang Anran Wang Weihui Bi Yunhe Zhang Jing Cao Qingfeng Dong 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第8期141-149,I0005,共10页
The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite de... The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%). 展开更多
关键词 Perovskite solar cells α-Phase FAPbI_(3) Blade coating Humid air stability Copper phthalocyanine
下载PDF
Recyclable Perovskite Solar Cells with Lead Sulfate Contact
2
作者 Guo-Bin Xiao xijiao mu +7 位作者 Luyao Wang Zhen-Yang Suo Artem musiienko Guixiang Li Zeying Guo Yiying Wu Antonio Abate Jing Cao 《CCS Chemistry》 CSCD 2024年第9期2254-2263,共10页
Previous cost analysis of perovskite solar cells(PSCs)has revealed that the transparent conductive oxide(TCO)substrates account for most of the material cost,emphasizing the need to recover TCO in PSC recycling.Howeve... Previous cost analysis of perovskite solar cells(PSCs)has revealed that the transparent conductive oxide(TCO)substrates account for most of the material cost,emphasizing the need to recover TCO in PSC recycling.However,the conventional use of compact and ultrathin electron transport materials(ETMs)such as TiO_(2)and SnO_(2),poses a challenge to their removal from the substrate,hindering effective PSC recycling.Here,PbSO_(4) nanoparticles with(011)surface were used as ETM to fabricate PSCs.The yielded metallicity on the PbSO_(4) nanoparticle surface promoted extracted electron transport across the nanoparticle surface.A certified efficiency as high as 17.9%for the submodule(204.9 cm^(2))with PbSO_(4) was realized successfully,and the best effi-ciency on a small area(0.1 cm^(2))reached 24.1%.The PbSO_(4) layer was removed effortlessly from the substrate by simple aminoethanol washing to recover the TCO,the most expensive component of PSCs.This work provides a novel strategy to prepare soluble insulator-based ETMs by constructing metallic surfaces of nanoparticles;thus,fabricating efficient and recyclable PSCs. 展开更多
关键词 wide-bandgap surface metallicity electron transport material perovskite solar cells RECYCLABILITY
原文传递
卟啉/酞菁光电材料分子电场调控 被引量:1
3
作者 穆希皎 买嗣备 +1 位作者 李丛平 曹靖 《中国科学:化学》 CAS CSCD 北大核心 2022年第8期1341-1356,共16页
卟啉/酞菁是一类高度共轭的杂环化合物,如何实现光电性质的精准调控是推动其光电应用的关键.分子电场是分子偶极或者分子晶体中偶极在分子或晶体内部引发的一种局域电场.对分子电场的调变相当于改变了分子或晶体的固有偶极,进而影响材... 卟啉/酞菁是一类高度共轭的杂环化合物,如何实现光电性质的精准调控是推动其光电应用的关键.分子电场是分子偶极或者分子晶体中偶极在分子或晶体内部引发的一种局域电场.对分子电场的调变相当于改变了分子或晶体的固有偶极,进而影响材料的载流子传输及光学性质,因此分子电场优化是调控材料光电性能的一种有效方法.本文阐述了分子偶极与分子电场的关系,综述了卟啉/酞菁分子电场调控其光电性能的研究工作,并介绍了本课题组发展的分子电场有效调控电荷传输行为的研究工作,阐明了分子电场对光电材料电荷分离传输及光学性质调变机制,对新型卟啉/酞菁光电材料理性设计提供了全新的研究思路. 展开更多
关键词 卟啉 酞菁 光电材料 分子电场 光电应用
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部