The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite de...The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%).展开更多
Previous cost analysis of perovskite solar cells(PSCs)has revealed that the transparent conductive oxide(TCO)substrates account for most of the material cost,emphasizing the need to recover TCO in PSC recycling.Howeve...Previous cost analysis of perovskite solar cells(PSCs)has revealed that the transparent conductive oxide(TCO)substrates account for most of the material cost,emphasizing the need to recover TCO in PSC recycling.However,the conventional use of compact and ultrathin electron transport materials(ETMs)such as TiO_(2)and SnO_(2),poses a challenge to their removal from the substrate,hindering effective PSC recycling.Here,PbSO_(4) nanoparticles with(011)surface were used as ETM to fabricate PSCs.The yielded metallicity on the PbSO_(4) nanoparticle surface promoted extracted electron transport across the nanoparticle surface.A certified efficiency as high as 17.9%for the submodule(204.9 cm^(2))with PbSO_(4) was realized successfully,and the best effi-ciency on a small area(0.1 cm^(2))reached 24.1%.The PbSO_(4) layer was removed effortlessly from the substrate by simple aminoethanol washing to recover the TCO,the most expensive component of PSCs.This work provides a novel strategy to prepare soluble insulator-based ETMs by constructing metallic surfaces of nanoparticles;thus,fabricating efficient and recyclable PSCs.展开更多
基金supported by the National Natural Science Foundation of China(22179050,21875089,51973080)。
文摘The extreme instability of pureα-phase FAPbI_(3) under high humidity conditions restricts the highthroughput fabrication in unmodified air environments,resulting in poor performance ofα-phase FAPbI_(3) perovskite devices obtained by scalable fabrication methods.Here we synthesized hyperbranched copper phthalocyanine(HCuPc)as a supramolecular additive with twisted phthalocyanine units to realize the molecular-level encapsulation at the grain boundaries through supramolecular interaction,which greatly broadened the processing window of FAPbI_(3) under high humidity.At the same time,unlike traditional encapsulation layer that carrier can only be collected by tunneling effect,the twisted phthalocyanine ring of HCu Pc in perovskite films is more conducive to hole extraction.Finally,a record efficiency was achieved in pure FAPbI_(3) based inverted structured solar cell by blade-coating to the best of our knowledge,even under unmodified humid air conditions(relative humidity of 65%–85%).The best operational stability of 3D pure FAPbI_(3) devices can also be achieved at the same time and unencapsulated HCuPc-FAPbI_(3) device can even operate with negligible degradation for 100 h in the open air(RH 30%–40%).
基金the National Natural Science Foundation of China(grant nos.22075116,22371096,and 22221001)Fundamental Research Funds for the Central Universities of China(grant no.lzujbky-2021-ey10)+1 种基金the U.S.Department of Energy(grant no.DE-FG02-07ER46427)European Union’s Framework Programme for Research and Innovation HORIZON EUROPE(2021-2027)under the Marie Skłodowska-Curie Action Postdoctoral Fellowships(European Fellowship,grant no.101061809 HyPerGreen).
文摘Previous cost analysis of perovskite solar cells(PSCs)has revealed that the transparent conductive oxide(TCO)substrates account for most of the material cost,emphasizing the need to recover TCO in PSC recycling.However,the conventional use of compact and ultrathin electron transport materials(ETMs)such as TiO_(2)and SnO_(2),poses a challenge to their removal from the substrate,hindering effective PSC recycling.Here,PbSO_(4) nanoparticles with(011)surface were used as ETM to fabricate PSCs.The yielded metallicity on the PbSO_(4) nanoparticle surface promoted extracted electron transport across the nanoparticle surface.A certified efficiency as high as 17.9%for the submodule(204.9 cm^(2))with PbSO_(4) was realized successfully,and the best effi-ciency on a small area(0.1 cm^(2))reached 24.1%.The PbSO_(4) layer was removed effortlessly from the substrate by simple aminoethanol washing to recover the TCO,the most expensive component of PSCs.This work provides a novel strategy to prepare soluble insulator-based ETMs by constructing metallic surfaces of nanoparticles;thus,fabricating efficient and recyclable PSCs.