期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
稳步推进化学实验教学中心建设,续写创新型人才培养新篇章
1
作者 敦长伟 张西军 +1 位作者 赵茜怡 郭玉明 《大学化学》 CAS 2024年第7期211-217,共7页
化学实验教学中心不仅是化学及相关专业学生进行实践操作、提升实验技能的重要场所,更是培养学生创新思维、科研能力的重要基地。河南师范大学化学实验教学中心以“科学规划、资源共享、突出重点、提高效益、持续发展”为指导思想,以能... 化学实验教学中心不仅是化学及相关专业学生进行实践操作、提升实验技能的重要场所,更是培养学生创新思维、科研能力的重要基地。河南师范大学化学实验教学中心以“科学规划、资源共享、突出重点、提高效益、持续发展”为指导思想,以能力培养为核心,将整个学院的科研和教学资源有机融入到实验教学中,着力培养知识宽厚、实践创新能力强的优秀人才。本文简要介绍河南师范大学化学实验教学中心概况,总结和分享我校化学实验教学中心在建设国家级实验教学示范中心过程中的一些措施和取得的阶段性成果,并对今后的建设发展进行展望。 展开更多
关键词 河南师范大学 化学国家级实验教学示范中心 实验室建设 人才培养
下载PDF
Short-Term Traffic Flow Prediction Based on LSTM-XGBoost Combination Model 被引量:4
2
作者 xijun zhang Qirui zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第10期95-109,共15页
According to the time series characteristics of the trajectory history data,we predicted and analyzed the traffic flow.This paper proposed a LSTMXGBoost model based urban road short-term traffic flow prediction in ord... According to the time series characteristics of the trajectory history data,we predicted and analyzed the traffic flow.This paper proposed a LSTMXGBoost model based urban road short-term traffic flow prediction in order to analyze and solve the problems of periodicity,stationary and abnormality of time series.It can improve the traffic flow prediction effect,achieve efficient traffic guidance and traffic control.The model combined the characteristics of LSTM(Long Short-Term Memory)network and XGBoost(Extreme Gradient Boosting)algorithms.First,we used the LSTM model that increases dropout layer to train the data set after preprocessing.Second,we replaced the full connection layer with the XGBoost model.Finally,we depended on the model training to strengthen the data association,avoided the overfitting phenomenon of the fully connected layer,and enhanced the generalization ability of the prediction model.We used the Kears based on TensorFlow to build the LSTM-XGBoost model.Using speed data samples of multiple road sections in Shenzhen to complete the model verification,we achieved the comparison of the prediction effects of the model.The results show that the combined prediction model used in this paper can not only improve the accuracy of prediction,but also improve the practicability,real-time and scalability of the model. 展开更多
关键词 Traffic flow prediction time series LSTM XGBoost deep learning
下载PDF
Sulfonic acid-based metal organic framework functionalized magnetic nanocomposite combined with gas chromatography-electron capture detector for extraction and determination of organochlorine 被引量:3
3
作者 Ying Wang Qing Ye +2 位作者 Menghuan Yu xijun zhang Chunhui Deng 《Chinese Chemical Letters》 SCIE CAS CSCD 2020年第7期1843-1846,共4页
The metal organic framework functionalized with sulfonic acid was combined with magnetic nanoparticles to fabricate a new nanocomposite(denoted as Fe3O4@PDA@Zr-SO3H).By combining with gas chromatography-electron captu... The metal organic framework functionalized with sulfonic acid was combined with magnetic nanoparticles to fabricate a new nanocomposite(denoted as Fe3O4@PDA@Zr-SO3H).By combining with gas chromatography-electron capture detector,the resulting Fe3O4@PDA@Zr-SO3H nanocomposite was successfully used as a high-efficiency adsorbent for pre-concentrating eight organochlorine pesticides from water sample in environment.Apart from the ability of fast separation,the as-prepared Fe3O4@PDA@Zr-SO3H nanocomposite also exhibited high adsorption capacity for organochlorine pesticides.With the use of optimal experimental conditions,the linear relationship can be obtained in the range of 0.05~300μg/L,the correlation coefficient was over 0.9978,and the relative standard deviation was located in 2.5%-7.7%.Moreover,the limit of detection and quantification was between0.005-0.016μg/L and 0.017~0.050μg/L.Finally,the nanocomposite was used for the determination of organochlorine pesticides from environmental water samples,and displayed the recovery of 82%-118%. 展开更多
关键词 Organochlorine pesticides Metal-organic framework Magnetic nanocomposite Water Gas chromatography-electron capture detector
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部