Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the...Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the existing systems.This derivation process consists of three steps:step 1,decomposing the vector field;step 2,solving the Hamilton energy function;and step 3,verifying uniqueness.In order to easily choose an appropriate decomposition method,we propose a classification criterion based on the form of system state variables,i.e.,type-I vector fields that can be directly decomposed and type-II vector fields decomposed via exterior differentiation.Moreover,exterior differentiation is used to represent the curl of low-high dimension vector fields in the process of decomposition.Finally,we exemplify the Hamilton energy function of six classical systems and analyze the relationship between Hamilton energy and dynamic behavior.This solution provides a new approach for deducing the Hamilton energy function,especially in high-dimensional systems.展开更多
Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role i...Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016μM.The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quantum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)pathways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.展开更多
To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)stru...To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.展开更多
The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establis...The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.展开更多
Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process ...Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process to enable rapid hemostasis,sutureless wound closure,and scarless healing of infected skin wounds[1e5].A new injectable,antibacterial,and multifunctional hydrogel dressings based on poly(citric acid-co-polyethylene glycol)-g-dopamine(PCPD)and amino-terminated Pluronic F127(APF)mi-celles loaded with astragaloside IV(AS)was developed for this pur-pose,as shown in Fig.1A[6].展开更多
BACKGROUND Congenital sideroblastic anemia(CSA)is a rare and heterogeneous group of genetic disorders.Conventional treatment include pyridoxine(vitamin B6)and allogeneic hematopoietic stem cell transplantation(allo-HS...BACKGROUND Congenital sideroblastic anemia(CSA)is a rare and heterogeneous group of genetic disorders.Conventional treatment include pyridoxine(vitamin B6)and allogeneic hematopoietic stem cell transplantation(allo-HSCT),and can alleviate anemia in the majority of cases.Nevertheless,some CSA cases remain unresponsive to pyridoxine or are unable to undergo allo-HSCT.Novel management approaches is necessary to be developed.To explore the response of luspatercept in treating congenital sideroblastic anemia.CASE SUMMARY We share our experience in luspatercept in a 4-year-old male patient with CSA.Luspatercept was administered subcutaneously at doses of 1.0 mg/kg/dose to 1.25 mg/kg/dose every 3 wk,three consecutive doses,evaluating the hematological response.Luspatercept leading to a significant improvement in the patient's anemia.The median hemoglobin during the overall treatment with three doses of luspatercept was 90(75-101)g/L,the median absolute reticulocyte count was 0.0593(0.0277-0.1030)×10^(12)/L,the median serum ferritin was 304.3(234.4-399)ng/mL,and the median lifespan of mature red blood cells was 80(57-92)days.Notably,no adverse reactions,such as headaches,dizziness,vomiting,joint pain,or back pain,were observed during the treatment period.CONCLUSION We believe that luspatercept might emerge as a viable therapeutic option for the maintenance treatment of CSA or as a bridging treatment option before hematopoietic stem cell transplantation.展开更多
To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing m...To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing machine,then used dynamic shear rheological test(DSR)and multiple stress creep recovery(MSCR)tests to evaluate.The hardness and softening point with rotational viscosity of samples raised with the addition of graphene,especially the addition of 0.04%.Dynamic shear rheological test revealedthat the dynamic shear modulus G*,rutting factor G*/Sin δ,and zero shear viscosity(ZSV)of graphene-modified rubber asphalt were greatly influenced along with graphene-increased,on the contrary,phase angle δ which characterize the viscoelastic ratio of asphalt decreased.Multiple stress creep recovery(MSCR)tests showed that the graphene-enhanced rubber asphalt had high-temperature stability through non-recoverable creep compliance(Jnr).Based on these findings,graphene-modified rubber asphalt binders with the addition of 0.04% graphene had good viscoelastic properties as well as high temperature rutting resistance performance.In the meantime,G*/Sin δ,ZSV,and Jnr100,Jnr3200 have good correlation,which can reveal the excellent high-temperature stability performance of asphalt.展开更多
In this study,we have summarized the coordination of operating room nurses participating in the multidisciplinary team in diagnosing and treating a patient with a large abdominal tumor and multiple pelvic fractures.To...In this study,we have summarized the coordination of operating room nurses participating in the multidisciplinary team in diagnosing and treating a patient with a large abdominal tumor and multiple pelvic fractures.To perform surgical treatment on patients with various conditions,it is crucial to consider the patients from a holistic perspective.Thus,the existing medical model has shifted from a“disease-centered”approach focusing on single-disciplinary diagnosis and treatment,to a“patient-centered”approach that involves multiple disciplines in diagnosis and therapy.Operating room nurses,as crucial collaborators of surgeons,should make necessary adjustments to enhance their comprehension of patients,improving the overall quality of surgical coordination.展开更多
Background:Mastitis caused by different pathogens including Streptococcus uberis(S.uberis)is responsible for huge economic losses to the dairy industry.In order to investigate the potential genetic and epigenetic regu...Background:Mastitis caused by different pathogens including Streptococcus uberis(S.uberis)is responsible for huge economic losses to the dairy industry.In order to investigate the potential genetic and epigenetic regulatory mecha‑nisms of subclinical mastitis due to S.uberis,the DNA methylome(whole genome DNA methylation sequencing)and transcriptome(RNA sequencing)of milk somatic cells from cows with naturally occurring S.uberis subclinical mastitis and healthy control cows(n=3/group)were studied.Results:Globally,the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns.The DNA methylation levels at the promoter,first exon and first intron regions were nega‑tively correlated with the expression level of genes at a whole‑genome‑wide scale.In general,DNA methylation level was lower in S.uberis‑positive group(SUG)than in the control group(CTG).A total of 174,342 differentially methylated cytosines(DMCs)(FDR<0.05)were identified between SUG and CTG,including 132,237,7412 and 34,693 DMCs in the context of CpG,CHG and CHH(H=A or T or C),respectively.Besides,101,612 methylation haplotype blocks(MHBs)were identified,including 451 MHBs that were significantly different(dMHB)between the two groups.A total of 2130 differentially expressed(DE)genes(1378 with up‑regulated and 752 with down‑regulated expression)were found in SUG.Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with signifi‑cant changes in their methylation levels and/or gene expression changes(MetGDE genes,MethGET P‑value<0.001).Functional enrichment of genes harboring≥15 DMCs,DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S.uberis infection,especially cytokine activities.Furthermore,discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers,including 6 DE genes,15 CpG‑DMCs and 5 dMHBs that discriminated between SUG and CTG.Conclusion:The integration of methylome and transcriptome of milk somatic cells suggests the possible involve‑ment of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S.uberis.The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance.展开更多
As a zero-carbon fuel,hydrogen can be produced via electrochemical water splitting using clean electric energy by the hydrogen evolution reaction(HER)process.The ultimate goal of HER catalyst is to replace the expensi...As a zero-carbon fuel,hydrogen can be produced via electrochemical water splitting using clean electric energy by the hydrogen evolution reaction(HER)process.The ultimate goal of HER catalyst is to replace the expensive Pt metal benchmark with a cheap one with equivalent activities.In this work,we investigated the possibility of HER process on single-atom catalysts(SACs)doped on two-dimensional(2D)GaPS_(4)materials,which have a large intrinsic band gap that can be regulated by doping and tensile strain.Based on the machine learning regression analysis,we can expand the prediction of HER performance to more catalysts without expensive DFT calculation.The electron affinity and first ionization energy are the two most important descriptors related to the HER behavior.Furthermore,constrain molecular dynamics with solvation models and constant potentials were applied to understand the dynamics barrier of HER process of Pt SAC on GaPS_(4)materials.These findings not only provide important insights into the catalytic properties of single-atom catalysts on GaPS_(4)2D materials,but also provides theoretical guidance paradigm for exploration of new catalysts.展开更多
Rhenium diselenide(ReSe_(2))has gathered much attention due to its low symmetry of lattice structure,which makes it possess in-plane anisotropic optical,electrical as well as excitonic properties and further enables R...Rhenium diselenide(ReSe_(2))has gathered much attention due to its low symmetry of lattice structure,which makes it possess in-plane anisotropic optical,electrical as well as excitonic properties and further enables ReSe_(2)have an important application in optoelectronic devices.Here,we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe_(2)flakes by using time-resolved pump–probe transient transmission spectroscopies.The results reveal two thickness-dependent relaxation processes of the excitons.The fast one correlates with the exciton formation(i.e.,the conversion of hot carriers to excitons),while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel.The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness,and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects.Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional(2D)plane.These results are insightful for better understanding of excitonic dynamics of ReSe_(2)materials and its application in future optoelectronic and electronic devices.展开更多
Tissue curvature has long been recognized as an important anatomical parameter that affects intracellular behaviors,and there is emerging interest in applying cell-scale curvature as a designer property to drive cell ...Tissue curvature has long been recognized as an important anatomical parameter that affects intracellular behaviors,and there is emerging interest in applying cell-scale curvature as a designer property to drive cell fates for tissue engineering purposes.Although neural cells are known to undergo dramatic and terminal morphological changes during development and curvature-limiting behaviors have been demonstrated in neurite outgrowth studies,there are still crucial gaps in understanding neural cell behaviors,particularly in the context of a three-dimensional(3D)curvature landscape similar to an actual tissue engineering scaffold.In this study,we fabricated two substrates of microcurvature(curvature-substrates)that present a smooth and repeating landscape with focuses of either a concave or a convex pattern.Using these curvature-substrates,we studied the properties of morphological differentiation in N2a neuroblastoma cells.In contrast to other studies where two-dimensional(2D)curvature was demonstrated to limit neurite outgrowth,we found that both the concave and convex substrates acted as continuous and uniform mechanical protrusions that significantly enhanced neural polarity and differentiation with few morphological changes in the main cell body.This enhanced differentiation was manifested in various properties,including increased neurite length,increased nuclear displacement,and upregulation of various neural markers.By demonstrating how the micron-scale curvature landscape induces neuronal polarity,we provide further insights into the design of biomaterials utilizing the influence of surface curvature in neural tissue engineering.展开更多
Strawflower(Helichrysum bracteatum)capitula have papery bracts and thus have the qualities of a naturally dried flower.The involucral bract cells have a secondary cell wall(SCW)of which a crucial component is lignin.A...Strawflower(Helichrysum bracteatum)capitula have papery bracts and thus have the qualities of a naturally dried flower.The involucral bract cells have a secondary cell wall(SCW)of which a crucial component is lignin.Although the constituents of SCWs have been studied extensively in plants,little is known of the mechanism regulating SCW formation,especially lignin biosynthesis in the involucral bracts of strawflower.In this study,a homolog of NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1,designated Hb NST1,was identified as a positive regulator of lignin biosynthesis in strawflower.The transcript level of Hb NST1 was the highest in the involucral bracts.Subcellular localization analysis indicated that Hb NST1 was localized to the nucleus.Overexpression of Hb NST1 in Chrysanthemum indicum promoted the expression of a gene related to lignin biosynthesis,a homolog of cinnamyl alcohol dehydrogenase,designated Ci CAD,suggesting that Hb NST1 was associated with the accumulation of lignin in the SCW of the involucral bracts.Taken together,the results suggested that Hb NST1 positively regulated lignin accumulation in the involucral bracts and mediated the expression of lignin biosynthesis-related genes in strawflower.展开更多
Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect o...Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect of the cooling water flow,thickness of the plate,and motor loss density on the cooling effect of the water cold plate were studied.To compare the cooling performance of water cold plate and outer spiral water jacket cooling structures,a high-speed permanent magnet motor with a high loss density was used to establish two motor models with the two cooling structures.Consequently,the cooling effects of the two models were analyzed using the finite element method under the same loss density,coolant flow,and main dimensions.The results were as follows.(1)The maximum and average temperatures of the water cold plate structure were reduced by 25.5%and 30.5%,respectively,compared to that of the outer spiral water jacket motor;(2)Compared with the outer spiral water jacket structure,the water cold plate structure can reduce the overall mass and volume of the motor.Considering a 100 kW high-speed permanent magnet motor as an example,a water cold plate cooling system was designed,and the temperature distribution is analyzed,with the result indicating that the cooling structure satisfied the cooling requirements of the high loss density motor.展开更多
Objective:In March 2022,more than 600 million cases of Corona Virus Disease 2019(COVID-19)and about 6 million deaths have been reported worldwide.Unfortunately,while effective antiviral therapy has not yet been availa...Objective:In March 2022,more than 600 million cases of Corona Virus Disease 2019(COVID-19)and about 6 million deaths have been reported worldwide.Unfortunately,while effective antiviral therapy has not yet been available,chloroquine(CQ)/hydroxychloroquine(HCQ)has been considered an option for the treatment of COVID-19.While many studies have demonstrated the potential of HCQ to decrease viral load and rescue patients'lives,controversial results have also been reported.One concern associated with HCQ in its clinical application to COVID-19 patients is the potential of causing long QT interval(LQT),an electrophysiological substrate for the induction of lethal ventricular tachyarrhythmias.Yet,the mechanisms for this cardiotoxicity of HCQ remained incompletely understood.Materials and methods:Adult New Zealand white rabbits were used for investigating the effects of HCQ on cardiac electrophysiology and expression of ion channel genes.HEK-293T cells with sustained overexpression of human-ether-a-go-go-related gene(hERG)K+channels were used for whole-cell patch-clamp recordings of hERG K+channel current(IhERG).Quantitative RT-PCR analysis and Western blot analysis were employed to determine the expression of various genes at mRNA and protein levels,respectively.Results:electrocardiogram(ECG)recordings revealed that HCQ prolonged QT and RR intervals and slowed heart rate in rabbits.Whole-cell patch-clamp results showed that HCQ inhibited the tail current of hERG channels and slowed the reactivation process from inactivation state.HCQ suppressed the expression of hERG and hindered the formation of the heat shock protein 90(Hsp90)/hERG complex.Moreover,the expression levels of connexin 43(CX43)and Kir2.1,the critical molecular/ionic determinants of cardiac conduction thereby ventricular arrythmias,were decreased by HCQ,while those of Cav1.2,the main Ca2+handling proteins,remained unchanged and SERCA2a was increased.Conclusion:HCQ could induce LQT but did not induce arrhythmias,and whether it is suitable for the treatment of COVID-19 requires more rigorous investigations and validations in the future.展开更多
BACKGROUND Pseudomyxoma peritonei(PMP)is a rare peritoneal malignant tumor syndrome.Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is its standard treatment.However,there are few studies...BACKGROUND Pseudomyxoma peritonei(PMP)is a rare peritoneal malignant tumor syndrome.Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is its standard treatment.However,there are few studies and insufficient evidence regarding systemic chemotherapy of advanced PMP.Regimens for colorectal cancer are often used clinically,but there is no uniform standard for late-stage treatment.AIM To determine if bevacizumab combined with cyclophosphamide and oxaliplatin(Bev+CTX+OXA)is effective for treatment of advanced PMP.The primary study endpoint was progression-free survival(PFS).METHODS Retrospective analysis was conducted on the clinical data of patients with advanced PMP who received Bev+CTX+OXA regimen(bevacizumab 7.5 mg/kg ivgtt d1,oxaliplatin 130 mg/m2 ivgtt d1 and cyclophosphamide 500 mg/m2 ivgtt d1,q3w)in our center from December 2015 to December 2020.Objective response rate(ORR),disease control rate(DCR)and incidence of adverse events were evaluated.PFS was followed up.Kaplan-Meier method was used to draw survival curve,and log-rank test was used for comparison between groups.Multivariate Cox proportional hazards regression model was used to analyze the independent influencing factors of PFS.RESULTS A total of 32 patients were enrolled.After 2 cycles,the ORR and DCR were 3.1%and 93.7%,respectively.The median follow-up time was 7.5 mo.During the follow-up period,14 patients(43.8%)had disease progression,and the median PFS was 8.9 mo.Stratified analysis showed that the PFS of patients with a preoperative increase in CA125(8.9 vs 2.1,P=0.022)and a completeness of cytoreduction score of 2-3(8.9 vs 5.0,P=0.043)was significantly longer than that of the control group.Multivariate analysis showed that a preoperative increase in CA125 was an independent prognostic factor for PFS(HR=0.245,95%CI:0.066-0.904,P=0.035).CONCLUSION Our retrospective assessment confirmed that the Bev+CTX+OXA regimen is effective in second-or posterior-line treatment of advanced PMP and that adverse reactions can be tolerated.A preoperative increase in CA125 is an independent prognostic factor of PFS.展开更多
Tuberculosis(TB)is a chronic infectious disease,which is caused by the pathogen Mycobacterium tuberculosis(Mtb)and reemerged as a global health risk with a significant proportion of multi-drug resistant and extensivel...Tuberculosis(TB)is a chronic infectious disease,which is caused by the pathogen Mycobacterium tuberculosis(Mtb)and reemerged as a global health risk with a significant proportion of multi-drug resistant and extensively drug resistant TB cases.It is very urgent to find some novel high-confidence drug targets in Mtb for discovering the effective anti-TB agents.Thioredoxin reductase(TrxR)has been identified to be a highly viable target for anti-TB drugs for its important role in protecting the pathogen from thiol-specific oxidizing stress,regulating intracellular dithiol/disulfide homeostasis and DNA replication and repair.In the present work,a near-infrared(NIR)fluorescent probe DDAT was developed for the detection of TrxR activity and used to high-throughput screen the TrxR inhibitors from natural products.Two screened TrxR inhibitors from Sappan Lignum and microbial metabolites that were further used to inhibit Mycobacterium tuberculosis.All the results indicate that DDAT is a practical fluorescent molecular tool for the discovery of potential anti-TB drugs.展开更多
基金the National Natural Science Foundation of China(Grant Nos.12305054,12172340,and 12371506)。
文摘Hamilton energy,which reflects the energy variation of systems,is one of the crucial instruments used to analyze the characteristics of dynamical systems.Here we propose a method to deduce Hamilton energy based on the existing systems.This derivation process consists of three steps:step 1,decomposing the vector field;step 2,solving the Hamilton energy function;and step 3,verifying uniqueness.In order to easily choose an appropriate decomposition method,we propose a classification criterion based on the form of system state variables,i.e.,type-I vector fields that can be directly decomposed and type-II vector fields decomposed via exterior differentiation.Moreover,exterior differentiation is used to represent the curl of low-high dimension vector fields in the process of decomposition.Finally,we exemplify the Hamilton energy function of six classical systems and analyze the relationship between Hamilton energy and dynamic behavior.This solution provides a new approach for deducing the Hamilton energy function,especially in high-dimensional systems.
基金supported by National Natural Science Foundation of China(Grant Nos.:81891010/81891011,81725023,82003614,82173950,31770192,32070187,32161133003 and 82003681)China Postdoctoral Science Foundation(Grant No:2022T150029).
文摘Currently,human health due to corona virus disease 2019(COVID-19)pandemic has been seriously threatened.The coronavirus severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)spike(S)protein plays a crucial role in virus transmission and several S-based therapeutic approaches have been approved for the treatment of COVID-19.However,the efficacy is compromised by the SARS-CoV-2 evolvement and mutation.Here we report the SARS-CoV-2 S protein receptor-binding domain(RBD)inhibitor licorice-saponin A3(A3)could widely inhibit RBD of SARS-CoV-2 variants,including Beta,Delta,and Omicron BA.1,XBB and BQ1.1.Furthermore,A3 could potently inhibit SARS-CoV-2 Omicron virus in Vero E6 cells,with EC50 of 1.016μM.The mechanism was related to binding with Y453 of RBD determined by hydrogen-deuterium exchange mass spectrometry(HDX-MS)analysis combined with quantum mechanics/molecular mechanics(QM/MM)simulations.Interestingly,phosphoproteomics analysis and multi fluorescent immunohistochemistry(mIHC)respectively indicated that A3 also inhibits host inflammation by directly modulating the JNK and p38 mitogen-activated protein kinase(MAPK)pathways and rebalancing the corresponding immune dysregulation.This work supports A3 as a promising broad-spectrum small molecule drug candidate for COVID-19.
基金financially funded by Natural Science Basic Research Program of Shaanxi(grant number 2022JM-239)Key Research and Development Project of Shaanxi Provincial(grant number 2021LLRH-05–08)。
文摘To study the formation and transformation mechanism of long-period stacked ordered(LPSO)structures,a systematic atomic scale analysis was conducted for the structural evolution of long-period stacked ordered(LPSO)structures in the Mg-Gd-Y-Zn-Zr alloy annealed at 300℃~500℃.Various types of metastable LPSO building block clusters were found to exist in alloy structures at different temperatures,which precipitate during the solidification and homogenization process.The stability of Zn/Y clusters is explained by the first principles of density functional theory.The LPSO structure is distinguished by the arrangement of its different Zn/Y enriched LPSO structural units,which comprises local fcc stacking sequences upon a tightly packed plane.The presence of solute atoms causes local lattice distortion,thereby enabling the rearrangement of Mg atoms in the different configurations in the local lattice,and local HCP-FCC transitions occur between Mg and Zn atoms occupying the nearest neighbor positions.This finding indicates that LPSO structures can generate necessary Schockley partial dislocations on specific slip surfaces,providing direct evidence of the transition from 18R to 14H.Growth of the LPSO,devoid of any defects and non-coherent interfaces,was observed separately from other precipitated phases.As a result,the precipitation sequence of LPSO in the solidification stage was as follows:Zn/Ycluster+Mg layers→various metastable LPSO building block clusters→18R/24R LPSO;whereas the precipitation sequence of LPSO during homogenization treatment was observed to be as follows:18R LPSO→various metastable LPSO building block clusters→14H LPSO.Of these,14H LPSO was found to be the most thermodynamically stable structure.
基金supported by the National Key R&D Program of China(Grant No.2022YFB3303500).
文摘The present study proposes a sub-grid scale model for the one-dimensional Burgers turbulence based on the neuralnetwork and deep learning method.The filtered data of the direct numerical simulation is used to establish thetraining data set,the validation data set,and the test data set.The artificial neural network(ANN)methodand Back Propagation method are employed to train parameters in the ANN.The developed ANN is applied toconstruct the sub-grid scale model for the large eddy simulation of the Burgers turbulence in the one-dimensionalspace.The proposed model well predicts the time correlation and the space correlation of the Burgers turbulence.
文摘Skin is one of the most vulnerable tissues,but there is a lack of injectable bioactive hydrogel dressings,which possess high strength,antiswelling capacity,and wet tissue adhesiveness,but also a rapid gelling process to enable rapid hemostasis,sutureless wound closure,and scarless healing of infected skin wounds[1e5].A new injectable,antibacterial,and multifunctional hydrogel dressings based on poly(citric acid-co-polyethylene glycol)-g-dopamine(PCPD)and amino-terminated Pluronic F127(APF)mi-celles loaded with astragaloside IV(AS)was developed for this pur-pose,as shown in Fig.1A[6].
基金National Natural Science Foundation of China,No.81890992.
文摘BACKGROUND Congenital sideroblastic anemia(CSA)is a rare and heterogeneous group of genetic disorders.Conventional treatment include pyridoxine(vitamin B6)and allogeneic hematopoietic stem cell transplantation(allo-HSCT),and can alleviate anemia in the majority of cases.Nevertheless,some CSA cases remain unresponsive to pyridoxine or are unable to undergo allo-HSCT.Novel management approaches is necessary to be developed.To explore the response of luspatercept in treating congenital sideroblastic anemia.CASE SUMMARY We share our experience in luspatercept in a 4-year-old male patient with CSA.Luspatercept was administered subcutaneously at doses of 1.0 mg/kg/dose to 1.25 mg/kg/dose every 3 wk,three consecutive doses,evaluating the hematological response.Luspatercept leading to a significant improvement in the patient's anemia.The median hemoglobin during the overall treatment with three doses of luspatercept was 90(75-101)g/L,the median absolute reticulocyte count was 0.0593(0.0277-0.1030)×10^(12)/L,the median serum ferritin was 304.3(234.4-399)ng/mL,and the median lifespan of mature red blood cells was 80(57-92)days.Notably,no adverse reactions,such as headaches,dizziness,vomiting,joint pain,or back pain,were observed during the treatment period.CONCLUSION We believe that luspatercept might emerge as a viable therapeutic option for the maintenance treatment of CSA or as a bridging treatment option before hematopoietic stem cell transplantation.
文摘To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing machine,then used dynamic shear rheological test(DSR)and multiple stress creep recovery(MSCR)tests to evaluate.The hardness and softening point with rotational viscosity of samples raised with the addition of graphene,especially the addition of 0.04%.Dynamic shear rheological test revealedthat the dynamic shear modulus G*,rutting factor G*/Sin δ,and zero shear viscosity(ZSV)of graphene-modified rubber asphalt were greatly influenced along with graphene-increased,on the contrary,phase angle δ which characterize the viscoelastic ratio of asphalt decreased.Multiple stress creep recovery(MSCR)tests showed that the graphene-enhanced rubber asphalt had high-temperature stability through non-recoverable creep compliance(Jnr).Based on these findings,graphene-modified rubber asphalt binders with the addition of 0.04% graphene had good viscoelastic properties as well as high temperature rutting resistance performance.In the meantime,G*/Sin δ,ZSV,and Jnr100,Jnr3200 have good correlation,which can reveal the excellent high-temperature stability performance of asphalt.
文摘In this study,we have summarized the coordination of operating room nurses participating in the multidisciplinary team in diagnosing and treating a patient with a large abdominal tumor and multiple pelvic fractures.To perform surgical treatment on patients with various conditions,it is crucial to consider the patients from a holistic perspective.Thus,the existing medical model has shifted from a“disease-centered”approach focusing on single-disciplinary diagnosis and treatment,to a“patient-centered”approach that involves multiple disciplines in diagnosis and therapy.Operating room nurses,as crucial collaborators of surgeons,should make necessary adjustments to enhance their comprehension of patients,improving the overall quality of surgical coordination.
文摘Background:Mastitis caused by different pathogens including Streptococcus uberis(S.uberis)is responsible for huge economic losses to the dairy industry.In order to investigate the potential genetic and epigenetic regulatory mecha‑nisms of subclinical mastitis due to S.uberis,the DNA methylome(whole genome DNA methylation sequencing)and transcriptome(RNA sequencing)of milk somatic cells from cows with naturally occurring S.uberis subclinical mastitis and healthy control cows(n=3/group)were studied.Results:Globally,the DNA methylation levels of CpG sites were low in the promoters and first exons but high in inner exons and introns.The DNA methylation levels at the promoter,first exon and first intron regions were nega‑tively correlated with the expression level of genes at a whole‑genome‑wide scale.In general,DNA methylation level was lower in S.uberis‑positive group(SUG)than in the control group(CTG).A total of 174,342 differentially methylated cytosines(DMCs)(FDR<0.05)were identified between SUG and CTG,including 132,237,7412 and 34,693 DMCs in the context of CpG,CHG and CHH(H=A or T or C),respectively.Besides,101,612 methylation haplotype blocks(MHBs)were identified,including 451 MHBs that were significantly different(dMHB)between the two groups.A total of 2130 differentially expressed(DE)genes(1378 with up‑regulated and 752 with down‑regulated expression)were found in SUG.Integration of methylome and transcriptome data with MethGET program revealed 1623 genes with signifi‑cant changes in their methylation levels and/or gene expression changes(MetGDE genes,MethGET P‑value<0.001).Functional enrichment of genes harboring≥15 DMCs,DE genes and MetGDE genes suggest significant involvement of DNA methylation changes in the regulation of the host immune response to S.uberis infection,especially cytokine activities.Furthermore,discriminant correlation analysis with DIABLO method identified 26 candidate biomarkers,including 6 DE genes,15 CpG‑DMCs and 5 dMHBs that discriminated between SUG and CTG.Conclusion:The integration of methylome and transcriptome of milk somatic cells suggests the possible involve‑ment of DNA methylation changes in the regulation of the host immune response to subclinical mastitis due to S.uberis.The presented genetic and epigenetic biomarkers could contribute to the design of management strategies of subclinical mastitis and breeding for mastitis resistance.
基金supported by the National Natural Science Foundation of China (Grant No.12164009),which is received by Xuefei Liuthe Guizhou Science and Technology Foundation-ZK[2022]General 308,which is received by Xuefei Liu+2 种基金Top scientific and technological talents in Guizhou Province of Qian Jiaoji[2022]No.078,which is received by Xuefei LiuGraduate Research Fund Project of Guizhou Province (YJSKYJJ[2021]088),which is received by Tianyun Liuthe Haihe Laboratory of Sustainable Chemical Transformation for financial support。
文摘As a zero-carbon fuel,hydrogen can be produced via electrochemical water splitting using clean electric energy by the hydrogen evolution reaction(HER)process.The ultimate goal of HER catalyst is to replace the expensive Pt metal benchmark with a cheap one with equivalent activities.In this work,we investigated the possibility of HER process on single-atom catalysts(SACs)doped on two-dimensional(2D)GaPS_(4)materials,which have a large intrinsic band gap that can be regulated by doping and tensile strain.Based on the machine learning regression analysis,we can expand the prediction of HER performance to more catalysts without expensive DFT calculation.The electron affinity and first ionization energy are the two most important descriptors related to the HER behavior.Furthermore,constrain molecular dynamics with solvation models and constant potentials were applied to understand the dynamics barrier of HER process of Pt SAC on GaPS_(4)materials.These findings not only provide important insights into the catalytic properties of single-atom catalysts on GaPS_(4)2D materials,but also provides theoretical guidance paradigm for exploration of new catalysts.
基金jointly supported by the National Key Research and Development Program of China(2018YFB1304905)the National Natural Science Foundation of China(NSFC)(62027812,U1813210,62003174,and 61903201)China Postdoctoral Science Foundation(2020M680865)。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12074202,12174207,and 11974190)the Natural Science Foundation of Tianjin City(Grant Nos.20JCQNJC00020 and 22JCYBJC00390)。
文摘Rhenium diselenide(ReSe_(2))has gathered much attention due to its low symmetry of lattice structure,which makes it possess in-plane anisotropic optical,electrical as well as excitonic properties and further enables ReSe_(2)have an important application in optoelectronic devices.Here,we report the thickness-dependent exciton relaxation dynamics of mechanically exfoliated few-layer ReSe_(2)flakes by using time-resolved pump–probe transient transmission spectroscopies.The results reveal two thickness-dependent relaxation processes of the excitons.The fast one correlates with the exciton formation(i.e.,the conversion of hot carriers to excitons),while the slow one is attributed to the exciton recombination dominated by defect-assisted exciton trapping besides photon emission channel.The decrease of scattering probability caused by defects leads to the increase of fast lifetime with thickness,and the increase of slow lifetime with thickness is related to the trap-mediated exciton depopulation induced by surface defects.Polarization-dependent transient spectroscopy indicates the isotropic exciton dynamics in the two-dimensional(2D)plane.These results are insightful for better understanding of excitonic dynamics of ReSe_(2)materials and its application in future optoelectronic and electronic devices.
基金supported by the Inter-Departmental Open Project of State Key Laboratory in Ultra-Precision Machining Technology(SKL-UPMT,No.P0033576).
文摘Tissue curvature has long been recognized as an important anatomical parameter that affects intracellular behaviors,and there is emerging interest in applying cell-scale curvature as a designer property to drive cell fates for tissue engineering purposes.Although neural cells are known to undergo dramatic and terminal morphological changes during development and curvature-limiting behaviors have been demonstrated in neurite outgrowth studies,there are still crucial gaps in understanding neural cell behaviors,particularly in the context of a three-dimensional(3D)curvature landscape similar to an actual tissue engineering scaffold.In this study,we fabricated two substrates of microcurvature(curvature-substrates)that present a smooth and repeating landscape with focuses of either a concave or a convex pattern.Using these curvature-substrates,we studied the properties of morphological differentiation in N2a neuroblastoma cells.In contrast to other studies where two-dimensional(2D)curvature was demonstrated to limit neurite outgrowth,we found that both the concave and convex substrates acted as continuous and uniform mechanical protrusions that significantly enhanced neural polarity and differentiation with few morphological changes in the main cell body.This enhanced differentiation was manifested in various properties,including increased neurite length,increased nuclear displacement,and upregulation of various neural markers.By demonstrating how the micron-scale curvature landscape induces neuronal polarity,we provide further insights into the design of biomaterials utilizing the influence of surface curvature in neural tissue engineering.
基金supported by National Key R&D Program of China(Grant No.2018YFD1000403)The National Natural Science Foundation(Grant Nos.32002072 and 31772347)China Postdoctoral Science Foundation(Grant No.2021M693429)。
文摘Strawflower(Helichrysum bracteatum)capitula have papery bracts and thus have the qualities of a naturally dried flower.The involucral bract cells have a secondary cell wall(SCW)of which a crucial component is lignin.Although the constituents of SCWs have been studied extensively in plants,little is known of the mechanism regulating SCW formation,especially lignin biosynthesis in the involucral bracts of strawflower.In this study,a homolog of NAC SECONDARY WALL THICKENING PROMOTING FACTOR 1,designated Hb NST1,was identified as a positive regulator of lignin biosynthesis in strawflower.The transcript level of Hb NST1 was the highest in the involucral bracts.Subcellular localization analysis indicated that Hb NST1 was localized to the nucleus.Overexpression of Hb NST1 in Chrysanthemum indicum promoted the expression of a gene related to lignin biosynthesis,a homolog of cinnamyl alcohol dehydrogenase,designated Ci CAD,suggesting that Hb NST1 was associated with the accumulation of lignin in the SCW of the involucral bracts.Taken together,the results suggested that Hb NST1 positively regulated lignin accumulation in the involucral bracts and mediated the expression of lignin biosynthesis-related genes in strawflower.
基金supported by the National Natural Science Foundation of China(51920105011)Natural Science Foundation of Liaoning Province(2021-YQ-09)Liaoning Bai Qian Wan Talents Program,China.
文摘Aiming at reducing the difficulty of cooling the interior of high-density motors,this study proposed the placement of a water cold plate cooling structure between the axial laminations of the motor stator.The effect of the cooling water flow,thickness of the plate,and motor loss density on the cooling effect of the water cold plate were studied.To compare the cooling performance of water cold plate and outer spiral water jacket cooling structures,a high-speed permanent magnet motor with a high loss density was used to establish two motor models with the two cooling structures.Consequently,the cooling effects of the two models were analyzed using the finite element method under the same loss density,coolant flow,and main dimensions.The results were as follows.(1)The maximum and average temperatures of the water cold plate structure were reduced by 25.5%and 30.5%,respectively,compared to that of the outer spiral water jacket motor;(2)Compared with the outer spiral water jacket structure,the water cold plate structure can reduce the overall mass and volume of the motor.Considering a 100 kW high-speed permanent magnet motor as an example,a water cold plate cooling system was designed,and the temperature distribution is analyzed,with the result indicating that the cooling structure satisfied the cooling requirements of the high loss density motor.
文摘Objective:In March 2022,more than 600 million cases of Corona Virus Disease 2019(COVID-19)and about 6 million deaths have been reported worldwide.Unfortunately,while effective antiviral therapy has not yet been available,chloroquine(CQ)/hydroxychloroquine(HCQ)has been considered an option for the treatment of COVID-19.While many studies have demonstrated the potential of HCQ to decrease viral load and rescue patients'lives,controversial results have also been reported.One concern associated with HCQ in its clinical application to COVID-19 patients is the potential of causing long QT interval(LQT),an electrophysiological substrate for the induction of lethal ventricular tachyarrhythmias.Yet,the mechanisms for this cardiotoxicity of HCQ remained incompletely understood.Materials and methods:Adult New Zealand white rabbits were used for investigating the effects of HCQ on cardiac electrophysiology and expression of ion channel genes.HEK-293T cells with sustained overexpression of human-ether-a-go-go-related gene(hERG)K+channels were used for whole-cell patch-clamp recordings of hERG K+channel current(IhERG).Quantitative RT-PCR analysis and Western blot analysis were employed to determine the expression of various genes at mRNA and protein levels,respectively.Results:electrocardiogram(ECG)recordings revealed that HCQ prolonged QT and RR intervals and slowed heart rate in rabbits.Whole-cell patch-clamp results showed that HCQ inhibited the tail current of hERG channels and slowed the reactivation process from inactivation state.HCQ suppressed the expression of hERG and hindered the formation of the heat shock protein 90(Hsp90)/hERG complex.Moreover,the expression levels of connexin 43(CX43)and Kir2.1,the critical molecular/ionic determinants of cardiac conduction thereby ventricular arrythmias,were decreased by HCQ,while those of Cav1.2,the main Ca2+handling proteins,remained unchanged and SERCA2a was increased.Conclusion:HCQ could induce LQT but did not induce arrhythmias,and whether it is suitable for the treatment of COVID-19 requires more rigorous investigations and validations in the future.
基金Supported by Beijing Municipal Administration of Hospitals’Ascent Plan,No.DFL20180701and Beijing Municipal Grant for Medical Talents Group on Peritoneal Surface Oncology,No.2017400003235J007。
文摘BACKGROUND Pseudomyxoma peritonei(PMP)is a rare peritoneal malignant tumor syndrome.Cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy is its standard treatment.However,there are few studies and insufficient evidence regarding systemic chemotherapy of advanced PMP.Regimens for colorectal cancer are often used clinically,but there is no uniform standard for late-stage treatment.AIM To determine if bevacizumab combined with cyclophosphamide and oxaliplatin(Bev+CTX+OXA)is effective for treatment of advanced PMP.The primary study endpoint was progression-free survival(PFS).METHODS Retrospective analysis was conducted on the clinical data of patients with advanced PMP who received Bev+CTX+OXA regimen(bevacizumab 7.5 mg/kg ivgtt d1,oxaliplatin 130 mg/m2 ivgtt d1 and cyclophosphamide 500 mg/m2 ivgtt d1,q3w)in our center from December 2015 to December 2020.Objective response rate(ORR),disease control rate(DCR)and incidence of adverse events were evaluated.PFS was followed up.Kaplan-Meier method was used to draw survival curve,and log-rank test was used for comparison between groups.Multivariate Cox proportional hazards regression model was used to analyze the independent influencing factors of PFS.RESULTS A total of 32 patients were enrolled.After 2 cycles,the ORR and DCR were 3.1%and 93.7%,respectively.The median follow-up time was 7.5 mo.During the follow-up period,14 patients(43.8%)had disease progression,and the median PFS was 8.9 mo.Stratified analysis showed that the PFS of patients with a preoperative increase in CA125(8.9 vs 2.1,P=0.022)and a completeness of cytoreduction score of 2-3(8.9 vs 5.0,P=0.043)was significantly longer than that of the control group.Multivariate analysis showed that a preoperative increase in CA125 was an independent prognostic factor for PFS(HR=0.245,95%CI:0.066-0.904,P=0.035).CONCLUSION Our retrospective assessment confirmed that the Bev+CTX+OXA regimen is effective in second-or posterior-line treatment of advanced PMP and that adverse reactions can be tolerated.A preoperative increase in CA125 is an independent prognostic factor of PFS.
基金the National Natural Science Foundation of China(Nos.81930112 and 82225048)Open Research Fund of the School of Chemistry and Chemical Engineering,Henan Normal University for support(No.2021YB07)Research on National Reference Material and Product Development of Natural Products(No.SG030801,Beijing Polytechnic)。
文摘Tuberculosis(TB)is a chronic infectious disease,which is caused by the pathogen Mycobacterium tuberculosis(Mtb)and reemerged as a global health risk with a significant proportion of multi-drug resistant and extensively drug resistant TB cases.It is very urgent to find some novel high-confidence drug targets in Mtb for discovering the effective anti-TB agents.Thioredoxin reductase(TrxR)has been identified to be a highly viable target for anti-TB drugs for its important role in protecting the pathogen from thiol-specific oxidizing stress,regulating intracellular dithiol/disulfide homeostasis and DNA replication and repair.In the present work,a near-infrared(NIR)fluorescent probe DDAT was developed for the detection of TrxR activity and used to high-throughput screen the TrxR inhibitors from natural products.Two screened TrxR inhibitors from Sappan Lignum and microbial metabolites that were further used to inhibit Mycobacterium tuberculosis.All the results indicate that DDAT is a practical fluorescent molecular tool for the discovery of potential anti-TB drugs.