Thermoelectric technologies based on Seebeck and Peltier effects, as energy techniques able to directly convert heat into electricity and vice versa, hold promise for addressing the global energy and environmental pro...Thermoelectric technologies based on Seebeck and Peltier effects, as energy techniques able to directly convert heat into electricity and vice versa, hold promise for addressing the global energy and environmental problems. The development of efficient and low-cost thermo- electric modules is the key to their large-scale commercial applications. In this paper, using a non-equilibrium laser 3D printing technique, we focus an attention on the fabrication of mid-temperature p-type SnTe thermoelectric materials. The influence of laser power, scanning speed and layer thickness on the macro-defects, chemical and phase composition, microstructure and thermoelectric performance was systematically investigated. First and foremost, the processing parameter window for printing a highquality layer is determined. This is followed by the finite element method used to simulate and verify the influence of the laser-induced molten pool temperature distribution on the final composition and microstructure. Finally, the high-performance SnTe layer with 10 mm × 10 mm in area is produced within seconds with room temperature Seebeck coefficient close to that of SnTe manufactured by the traditional methods. Consequently, this work lays a solid foundation for the future fabrication of thermoelectric modules using laser non-equilibrium printing techniques.展开更多
In this paper, a series of Sb-doped and Bi-doped Cu_(2)Sn_(1-x)M_(x)Se_(3) samples(M = Sb, Bi) are prepared by vacuum melting combined with the spark plasma sintering process. The effects of different atomic doping am...In this paper, a series of Sb-doped and Bi-doped Cu_(2)Sn_(1-x)M_(x)Se_(3) samples(M = Sb, Bi) are prepared by vacuum melting combined with the spark plasma sintering process. The effects of different atomic doping amounts on their properties are discussed. Structural studies indicate that all obtained samples comprise a single Cu_(2)SnSe_(3) phase. Sb and Bi atoms are experimentally demonstrated to be efficient cation dopants for increasing the transport performance. Compared with that doping on the cation site,Bi doping is much more efficient in increasing the electron concentration of the Cu_(2)SnSe_(3) system. Ultimately, a high figure of merit of 0.36 is achieved in the Cu_(2)Sn_(0.94)Sb_(0.06) Se_(3) sample at 773 K due to the enhanced power factor and lowered lattice thermal conductivity,which are 1.73 times higher than those of the pure sample.Our results provide an efficient approach to enhance thermoelectric performance via other doping atoms, which could also be applied to copper-based chalcogenide materials.展开更多
基金financially supported by the National Natural Science Foundation of China (Nos. 51401153 and 51772232)the Program of the Ministry of Education of China for Introducing Talents of Discipline to Universities of China (No. B07040)
文摘Thermoelectric technologies based on Seebeck and Peltier effects, as energy techniques able to directly convert heat into electricity and vice versa, hold promise for addressing the global energy and environmental problems. The development of efficient and low-cost thermo- electric modules is the key to their large-scale commercial applications. In this paper, using a non-equilibrium laser 3D printing technique, we focus an attention on the fabrication of mid-temperature p-type SnTe thermoelectric materials. The influence of laser power, scanning speed and layer thickness on the macro-defects, chemical and phase composition, microstructure and thermoelectric performance was systematically investigated. First and foremost, the processing parameter window for printing a highquality layer is determined. This is followed by the finite element method used to simulate and verify the influence of the laser-induced molten pool temperature distribution on the final composition and microstructure. Finally, the high-performance SnTe layer with 10 mm × 10 mm in area is produced within seconds with room temperature Seebeck coefficient close to that of SnTe manufactured by the traditional methods. Consequently, this work lays a solid foundation for the future fabrication of thermoelectric modules using laser non-equilibrium printing techniques.
基金financially supported by the National Key Research and Development Program of China(No.2019YFA0210003)the National Natural Science Foundation of China(Nos.11775163 and 11875208)。
文摘In this paper, a series of Sb-doped and Bi-doped Cu_(2)Sn_(1-x)M_(x)Se_(3) samples(M = Sb, Bi) are prepared by vacuum melting combined with the spark plasma sintering process. The effects of different atomic doping amounts on their properties are discussed. Structural studies indicate that all obtained samples comprise a single Cu_(2)SnSe_(3) phase. Sb and Bi atoms are experimentally demonstrated to be efficient cation dopants for increasing the transport performance. Compared with that doping on the cation site,Bi doping is much more efficient in increasing the electron concentration of the Cu_(2)SnSe_(3) system. Ultimately, a high figure of merit of 0.36 is achieved in the Cu_(2)Sn_(0.94)Sb_(0.06) Se_(3) sample at 773 K due to the enhanced power factor and lowered lattice thermal conductivity,which are 1.73 times higher than those of the pure sample.Our results provide an efficient approach to enhance thermoelectric performance via other doping atoms, which could also be applied to copper-based chalcogenide materials.