SnS and Ag films were deposited on glass sub-strates by vacuum thermal evaporation tech-nique successively, and then the films were annealed at different temperatures (0-300℃) in N2 atmosphere for 2h in order to obta...SnS and Ag films were deposited on glass sub-strates by vacuum thermal evaporation tech-nique successively, and then the films were annealed at different temperatures (0-300℃) in N2 atmosphere for 2h in order to obtain sil-ver-doped SnS ( SnS:Ag ) films. The phases of SnS:Ag films were analyzed by X-ray diffraction (XRD) system, which indicated that the films were polycrystalline SnS with orthogonal struc-ture, and the crystallites in the films were ex-clusively oriented along the(111)direction. With the increase of the annealing temperature, the carrier concentration and mobility of the films first rose and then dropped, whereas their re-sistivity and direct band gap Eg showed the contrary trend. At the annealing temperature of 260℃, the SnS:Ag films had the best properties: the direct bandgap was 1.3 eV, the carrier con-centration was up to 1.132 × 1017 cm-3, and the resistivity was about 3.1 Ωcm.展开更多
文摘SnS and Ag films were deposited on glass sub-strates by vacuum thermal evaporation tech-nique successively, and then the films were annealed at different temperatures (0-300℃) in N2 atmosphere for 2h in order to obtain sil-ver-doped SnS ( SnS:Ag ) films. The phases of SnS:Ag films were analyzed by X-ray diffraction (XRD) system, which indicated that the films were polycrystalline SnS with orthogonal struc-ture, and the crystallites in the films were ex-clusively oriented along the(111)direction. With the increase of the annealing temperature, the carrier concentration and mobility of the films first rose and then dropped, whereas their re-sistivity and direct band gap Eg showed the contrary trend. At the annealing temperature of 260℃, the SnS:Ag films had the best properties: the direct bandgap was 1.3 eV, the carrier con-centration was up to 1.132 × 1017 cm-3, and the resistivity was about 3.1 Ωcm.