Antimony selenide(Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film...Antimony selenide(Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film thickness. A method combining the advantages of Levenberg–Marquardt method and spectral fitting method(LM–SFM) is presented to study the dependence of refractive index(RI), absorption coefficient, optical band gap, Wemple–Di Domenico parameters, dielectric constant and optical electronegativity of the Sb2Se3films on their thickness. The results show that the RI and absorption coefficient of the Sb2Se3films increase with the increase of film thickness, while the optical band gap decreases with the increase of film thickness. Finally, the reasons why the optical and electrical properties of the film change with its thickness are explained by x-ray diffractometer(XRD), energy dispersive x-ray spectrometer(EDS), Mott–Davis state density model and Raman microstructure analysis.展开更多
Porous Ti3SiC2with high purity was synthesized using TiH2,Si and C powders with mole ratio of Ti to Si to C being3:1.2:2by reactive synthesis method.The corrosion behaviors of porous Ti3SiC2in nitric acid and aqua reg...Porous Ti3SiC2with high purity was synthesized using TiH2,Si and C powders with mole ratio of Ti to Si to C being3:1.2:2by reactive synthesis method.The corrosion behaviors of porous Ti3SiC2in nitric acid and aqua regia were investigated byimmersing test.Scanning electron microscope(SEM),X-ray diffractometer(XRD),energy dispersive spectrometer(EDS)and X-rayphotoelectron spectroscopy(XPS)were used to analyze the morphology,compositions and element contents of the samples beforeand after corrosion to determine the corrosion product and corrosion mechanism.The mass loss values of porous Ti3SiC2are26.9and132.5μg/cm2,respectively after immersing in nitric acid and aqua regia for600h.The results indicate that Ti3SiC2transforms toTi5Si3which has better corrosion resistance in nitric acid and aqua regia with mass loss values of9.34and7.06μg/cm2under thesame immersing time,respectively.The dramatic dissolution of porous Ti3SiC2in the acids is due to its special microstructure.展开更多
The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were inve...The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were investigated. The results indicate that the bending strength and tribological behavior of Cu-WS2 composites are greatly affected by the size of WS2 particles. The bending strength of Cu-WS2 composites with the WS2 particle size of 5.0 μm is 292.2 MPa. As the size of WS2 particle decreases to 0.6 μm, the bending strength also decreases to 181.5 MPa. Moreover, as the WS2 particle size decreases from 5.0 to 0.6 μm, the wear rate of Cu-WS2 composite sharply increases from 2.99×10^-14 to 6.13×10^-14 m^3/(N·m) and its friction coefficient increases from 0.158 to 0.172. The size of WS2 particle(5.0 μm) plays an important role in forming transfer film formed on the counter-face. The sample with 5.0 μm WS2 particle forms smoother and more continuous transfer film, which results in a low wear rate and friction coefficient of the Cu-WS2 composites.展开更多
High-purity porous Ti3SiC2 with a porosity of 54.3%was prepared by reactive synthesis and its oxidation behavior was evaluated under air in the temperature range from 400 to 1000°C.Thermogravimetric analysis and ...High-purity porous Ti3SiC2 with a porosity of 54.3%was prepared by reactive synthesis and its oxidation behavior was evaluated under air in the temperature range from 400 to 1000°C.Thermogravimetric analysis and differential scanning calorimetry(TG-DSC),scanning electron microscope(SEM),X-ray diffractometometry(XRD),energy dispersive spectrometer(EDS),Raman spectrum,BET surface area analysis,and pore-parameter testing were applied to the studies of the oxidation kinetics,phase composition,micro morphology,and porous structure parameters of porous Ti3SiC2 before and after oxidation.The results showed that the formation of TiO2 oxidized products with different modifications was the primary factor influencing the oxidation resistance and structural stability of porous Ti3SiC2.Cracks were observed in the samples oxidized in the full temperature range of 400-1000°C because of the growth stress and thermal stress.At 400-600°C,anomalous oxidation with higher kinetics and the aberrant decrement in pore size and permeability were attributed to the occurrence of severe cracking caused by the formation of anatase TiO2.At raised temperatures over 600°C,the cracking phenomena were alleviated by the formation of rutile TiO2,but the outward growth of the oxide scales detrimentally decreased the connectivity of porous Ti3SiC2.展开更多
The morphology and size of second phase greatly influence the strengthening effect on oxidation dispersion strengthened Mo alloys.In this work,a novel nanostructuring strategy is adopted to modify the second phase of ...The morphology and size of second phase greatly influence the strengthening effect on oxidation dispersion strengthened Mo alloys.In this work,a novel nanostructuring strategy is adopted to modify the second phase of Y_(2)O_(3),and the corresponding effects of particle shape and size on mechanical properties of sintered Mo−Y_(2)O_(3) alloys were investigated.It is found that spherical particles with sizes below 200 nm are preferred due to the dominant intragranular distribution of second phases associated with better strengthening effect originating from dislocation pinning.With smaller particle size of Y_(2)O_(3) nanospheres(105 nm),the tensile strength of corresponding Mo alloy is enhanced by about 43.8%,much higher than that(8.3%)reinforced by second phase nanospheres with larger particle size(322 nm).Meanwhile,with similar particle size(around 100 nm),the spherical shape exhibits better strengthening effect than the one reinforced by one-dimensional rod-like second phase.展开更多
We report herein the cationic polymerization of isobutylene(IB)under mild conditions is realized with a new binary initiation system generated by simply mixing a Lewis super acid Al(C_(6)F_(5))_(3) and a substituted p...We report herein the cationic polymerization of isobutylene(IB)under mild conditions is realized with a new binary initiation system generated by simply mixing a Lewis super acid Al(C_(6)F_(5))_(3) and a substituted phenol(RPhOH).Polymers with medium and/or high molecular weights(M_(W)=4.9×10^(4)-27.7×10^(4) g·mol^(-1))can be obtained in toluene and temperatures from-20℃to 0℃.NMR spectrum analysis and DFT sim ulation reveals the in situ generated acidic coordinating complex Ak(C_(6)F_(5))_(3)·RPhOH is the initiating active species,which fu rther tran sformed into the ion-pair[Al(C_(6)F_(5))_(3)ORPh]^(-)[PIB]^(+)of the active intermediates upon growing IB monomers where the counter anion[Al(C_(6)F_(5))_(3)R^(O)Ph]-coordinates to the macrocation via the phenoxy oxygen.The catalyst performances are the concert effects of the steric bulkiness and electronics of the counter anion on the coordinating strength to the macrocation,which is significant to the stability of the active species.展开更多
A highly efficient strategy for the synthesis of polylactide with the UV absorption ability was established by employing a Salan-yttrium complex(acting as a fast runing catalyst) combined with large excess hydroxyl ...A highly efficient strategy for the synthesis of polylactide with the UV absorption ability was established by employing a Salan-yttrium complex(acting as a fast runing catalyst) combined with large excess hydroxyl functionalized benzophenone, BP′-OH. During polymerization, BP′-OH, acting as the chain transfer agent, attached to the active rare-earth metal catalyst via a rapid-reversible exchange reaction to initiate the polymerization. Thus, more polyester chains appeared to grow from one active metal species, and the UV absorption fragments were incorporated into the polymer chains at specific sites, in situ. A high productivity up to 1000 mol LA/mol(Salan-Y) was successfully achieved and 100 BP′-labeled PLA chains grew from each active metal center.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 62075109, 62135011, 62075107, and 61935006)K. C. Wong Magna Fund in Ningbo University。
文摘Antimony selenide(Sb2Se3) films are widely used in phase change memory and solar cells due to their stable switching effect and excellent photovoltaic properties. These properties of the films are affected by the film thickness. A method combining the advantages of Levenberg–Marquardt method and spectral fitting method(LM–SFM) is presented to study the dependence of refractive index(RI), absorption coefficient, optical band gap, Wemple–Di Domenico parameters, dielectric constant and optical electronegativity of the Sb2Se3films on their thickness. The results show that the RI and absorption coefficient of the Sb2Se3films increase with the increase of film thickness, while the optical band gap decreases with the increase of film thickness. Finally, the reasons why the optical and electrical properties of the film change with its thickness are explained by x-ray diffractometer(XRD), energy dispersive x-ray spectrometer(EDS), Mott–Davis state density model and Raman microstructure analysis.
基金Projects(51604305,51504296) supported by the National Natural Science Foundation of ChinaProject(2016M592445) supported by the China Postdoctoral Science FoundationProject(169715) supported by the Postdoctoral Science Foundation of Central South University,China
文摘Porous Ti3SiC2with high purity was synthesized using TiH2,Si and C powders with mole ratio of Ti to Si to C being3:1.2:2by reactive synthesis method.The corrosion behaviors of porous Ti3SiC2in nitric acid and aqua regia were investigated byimmersing test.Scanning electron microscope(SEM),X-ray diffractometer(XRD),energy dispersive spectrometer(EDS)and X-rayphotoelectron spectroscopy(XPS)were used to analyze the morphology,compositions and element contents of the samples beforeand after corrosion to determine the corrosion product and corrosion mechanism.The mass loss values of porous Ti3SiC2are26.9and132.5μg/cm2,respectively after immersing in nitric acid and aqua regia for600h.The results indicate that Ti3SiC2transforms toTi5Si3which has better corrosion resistance in nitric acid and aqua regia with mass loss values of9.34and7.06μg/cm2under thesame immersing time,respectively.The dramatic dissolution of porous Ti3SiC2in the acids is due to its special microstructure.
基金Projects(51674304,51604305)supported by the National Natural Science Foundation of ChinaProject(2016M592445)supported by the China Postdoctoral Science Foundation
文摘The mechanical properties and tribological behaviors of Cu-WS2 composites fabricated by spark plasma sintering(SPS) using two different WS2 particle sizes of 0.6 and 5.0 μm and Cu powders as raw materials were investigated. The results indicate that the bending strength and tribological behavior of Cu-WS2 composites are greatly affected by the size of WS2 particles. The bending strength of Cu-WS2 composites with the WS2 particle size of 5.0 μm is 292.2 MPa. As the size of WS2 particle decreases to 0.6 μm, the bending strength also decreases to 181.5 MPa. Moreover, as the WS2 particle size decreases from 5.0 to 0.6 μm, the wear rate of Cu-WS2 composite sharply increases from 2.99×10^-14 to 6.13×10^-14 m^3/(N·m) and its friction coefficient increases from 0.158 to 0.172. The size of WS2 particle(5.0 μm) plays an important role in forming transfer film formed on the counter-face. The sample with 5.0 μm WS2 particle forms smoother and more continuous transfer film, which results in a low wear rate and friction coefficient of the Cu-WS2 composites.
基金Projects(51801183,51634006,51504296,51604305)supported by the National Natural Science Foundation of China
文摘High-purity porous Ti3SiC2 with a porosity of 54.3%was prepared by reactive synthesis and its oxidation behavior was evaluated under air in the temperature range from 400 to 1000°C.Thermogravimetric analysis and differential scanning calorimetry(TG-DSC),scanning electron microscope(SEM),X-ray diffractometometry(XRD),energy dispersive spectrometer(EDS),Raman spectrum,BET surface area analysis,and pore-parameter testing were applied to the studies of the oxidation kinetics,phase composition,micro morphology,and porous structure parameters of porous Ti3SiC2 before and after oxidation.The results showed that the formation of TiO2 oxidized products with different modifications was the primary factor influencing the oxidation resistance and structural stability of porous Ti3SiC2.Cracks were observed in the samples oxidized in the full temperature range of 400-1000°C because of the growth stress and thermal stress.At 400-600°C,anomalous oxidation with higher kinetics and the aberrant decrement in pore size and permeability were attributed to the occurrence of severe cracking caused by the formation of anatase TiO2.At raised temperatures over 600°C,the cracking phenomena were alleviated by the formation of rutile TiO2,but the outward growth of the oxide scales detrimentally decreased the connectivity of porous Ti3SiC2.
基金financially supported by the National Key R&D Program of China (No. 2017YFB0306001)Guangxi Key Laboratory of Manufacturing System and Advanced Manufacturing Technology, China (No. 20-065-40-001k)。
文摘The morphology and size of second phase greatly influence the strengthening effect on oxidation dispersion strengthened Mo alloys.In this work,a novel nanostructuring strategy is adopted to modify the second phase of Y_(2)O_(3),and the corresponding effects of particle shape and size on mechanical properties of sintered Mo−Y_(2)O_(3) alloys were investigated.It is found that spherical particles with sizes below 200 nm are preferred due to the dominant intragranular distribution of second phases associated with better strengthening effect originating from dislocation pinning.With smaller particle size of Y_(2)O_(3) nanospheres(105 nm),the tensile strength of corresponding Mo alloy is enhanced by about 43.8%,much higher than that(8.3%)reinforced by second phase nanospheres with larger particle size(322 nm).Meanwhile,with similar particle size(around 100 nm),the spherical shape exhibits better strengthening effect than the one reinforced by one-dimensional rod-like second phase.
基金financially supported by the National Natural Science Foundation of China(Nos.U21A20279 and 21774119)。
文摘We report herein the cationic polymerization of isobutylene(IB)under mild conditions is realized with a new binary initiation system generated by simply mixing a Lewis super acid Al(C_(6)F_(5))_(3) and a substituted phenol(RPhOH).Polymers with medium and/or high molecular weights(M_(W)=4.9×10^(4)-27.7×10^(4) g·mol^(-1))can be obtained in toluene and temperatures from-20℃to 0℃.NMR spectrum analysis and DFT sim ulation reveals the in situ generated acidic coordinating complex Ak(C_(6)F_(5))_(3)·RPhOH is the initiating active species,which fu rther tran sformed into the ion-pair[Al(C_(6)F_(5))_(3)ORPh]^(-)[PIB]^(+)of the active intermediates upon growing IB monomers where the counter anion[Al(C_(6)F_(5))_(3)R^(O)Ph]-coordinates to the macrocation via the phenoxy oxygen.The catalyst performances are the concert effects of the steric bulkiness and electronics of the counter anion on the coordinating strength to the macrocation,which is significant to the stability of the active species.
基金financially supported by the National Natural Science Foundation of China(Nos.21361140371,51021003,21774119 and 21774071)
文摘A highly efficient strategy for the synthesis of polylactide with the UV absorption ability was established by employing a Salan-yttrium complex(acting as a fast runing catalyst) combined with large excess hydroxyl functionalized benzophenone, BP′-OH. During polymerization, BP′-OH, acting as the chain transfer agent, attached to the active rare-earth metal catalyst via a rapid-reversible exchange reaction to initiate the polymerization. Thus, more polyester chains appeared to grow from one active metal species, and the UV absorption fragments were incorporated into the polymer chains at specific sites, in situ. A high productivity up to 1000 mol LA/mol(Salan-Y) was successfully achieved and 100 BP′-labeled PLA chains grew from each active metal center.