期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Topology and Shape Optimization of 2-D and 3-D Micro-ArchitecturedThermoelastic Metamaterials Using a Parametric Level Set Method 被引量:1
1
作者 Ellie Vineyard xin-lin gao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第6期819-854,共36页
2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization... 2-D and 3-D micro-architectured multiphase thermoelastic metamaterials are designed and analyzed using a parametric level set method for topology optimization and the finite element method.An asymptotic homogenization approach is employed to obtain the effective thermoelastic properties of the multiphase metamaterials.Theε-constraint multi-objective optimization method is adopted in the formulation.The coefficient of thermal expansion(CTE)and Poisson’s ratio(PR)are chosen as two objective functions,with the CTE optimized and the PR treated as a constraint.The optimization problems are solved by using the method of moving asymptotes.Effective isotropic and anisotropic CTEs and stiffness constants are obtained for the topologically optimized metamaterials with prescribed values of PR under the constraints of specified effective bulk modulus,volume fractions and material symmetry.Two solid materials along with one additional void phase are involved in each of the 2-D and 3-D optimal design examples.The numerical results reveal that the newly proposed approach can integrate shape and topology optimizations and lead to optimal microstructures with distinct topological boundaries.The current method can topologically optimize metamaterials with a positive,negative or zero CTE and a positive,negative or zero Poisson’s ratio. 展开更多
关键词 Topology optimization thermoelastic metamaterial level set method sensitivity analysis Poisson’s ratio coefficient of thermal expansion effective elastic properties
下载PDF
Effects of Stress Level and Stress State on Creep Ductility:Evaluation of Different Models 被引量:6
2
作者 Jian-Feng Wen Shan-Tung Tu +2 位作者 Fu-Zhen Xuan Xue-Wei Zhang xin-lin gao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第8期695-704,共10页
The last few decades have witnessed an increasing emphasis on the development of strain-based ap- proach for predicting the creep life or damage of components operating at elevated temperatures. Creep ductility, as a ... The last few decades have witnessed an increasing emphasis on the development of strain-based ap- proach for predicting the creep life or damage of components operating at elevated temperatures. Creep ductility, as a key parameter in this approach, may vary with a number of factors including strain rate, state of stress, operating temperature, material microstructure, etc. The present paper, however, is focused on reviewing the state-of-the-art understanding of the effects of stress level and stress state on the creep ductility. Mechanisms involving the void growth and coalescence are presented to describe the role of stress level in the variation of uniaxial creep ductility. The prediction capacity of existing empirical duc- tility models is also assessed in light of uniaxial test data. On the other hand, a vast body of multiaxial creep test data, collected from open literature, is utilized to examine the influence of the state of stress on the creep ductility. Then, a variety of multiaxial ductility factor models are introduced and evaluated with the available experimental data. Finally, a brief discussion on the dependence of creep ductility on the stress triaxiality and Lode parameter, predicted by numerical methods, is provided. 展开更多
关键词 Creep Creep ductility Multiaxial stress state Ductility exhaustion
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部