期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Study on the in situ desulfurization and viscosity reduction of heavy oil over MoO_(3)–ZrO_(2)/HZSM-5 catalyst
1
作者 Rui-Qi Liu Li-Qiang Zhang +6 位作者 Hui-Da Pan Yi-Ya Wang Jin-Yu Li Xin-Wei Wang Zheng-Da Yang xin-lu han Ri-Yi Lin 《Petroleum Science》 SCIE EI CAS CSCD 2023年第6期3887-3896,共10页
Heavy oil is characterized by high viscosity.High viscosity makes it challenging to recover and transport.HZSM-5,MoO_(3)/HZSM-5,ZrO_(2)/HZSM-5 and MoO_(3)–ZrO_(2)/HZSM-5 catalysts were developed to promote in situ de... Heavy oil is characterized by high viscosity.High viscosity makes it challenging to recover and transport.HZSM-5,MoO_(3)/HZSM-5,ZrO_(2)/HZSM-5 and MoO_(3)–ZrO_(2)/HZSM-5 catalysts were developed to promote in situ desulfurization and viscosity reduction of heavy oil.The physical and chemical properties of catalysts were characterized by XPS,XRD,TEM,NH3-TPD,etc.The effects of temperature,catalyst type and addition amount on viscosity and composition of heavy oil were evaluated.The results showed that the presence of MoO_(3)–ZrO_(2)/HZSM-5 nanoparticles during aquathermolysis could improve the oil quality by reducing the heavy fractions.It reduced viscosity by 82.56%after the reaction at 280℃ and catalyst addition of 1 wt%.The contents of resins and asphaltic in the oil samples were 5.69%lower than that in the crude oil.Sulfur content decreased from 1.45%to 1.03%.The concentration of H2S produced by the reaction was 2225 ppm.The contents of sulfur-containing functional groups sulfoxide and sulfone sulfur in the oil samples decreased by 19.92%after the catalytic reaction.The content of stable thiophene sulfur increased by 5.71%.This study provided a basis for understanding the mechanism of heavy oil desulfurization and viscosity reduction. 展开更多
关键词 Heavy oil Hydrothermal cracking MoO_(3)-ZrO_(2)/HZSM-5 catalyst DESULFURIZATION Viscosity reduction
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部