期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
GABA_A Receptor Activity Suppresses the Transition from Interictal to Ictal Epileptiform Discharges in Juvenile Mouse Hippocampus 被引量:4
1
作者 Yan-Yan Chang xin-wei gong +3 位作者 Hai-Qing gong Pei-Ji Liang Pu-Ming Zhang Qin-Chi Lu 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第6期1007-1016,共10页
Exploring the transition from inter-ictal to ictal epileptiform discharges(IDs) and how GABAAreceptormediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment.We ... Exploring the transition from inter-ictal to ictal epileptiform discharges(IDs) and how GABAAreceptormediated action affects the onset of IDs will enrich our understanding of epileptogenesis and epilepsy treatment.We used Mg2+-free artificial cerebrospinal fluid(ACSF) to induce epileptiform discharges in juvenile mouse hippocampal slices and used a micro-electrode array to record the discharges. After the slices were exposed to Mg2+-free ACSF for 10 min–20 min, synchronous recurrent seizurelike events were recorded across the slices, and each event evolved from inter-ictal epileptiform discharges(IIDs) to pre-ictal epileptiform discharges(PIDs), and then to IDs.During the transition from IIDs to PIDs, the duration of discharges increased and the inter-discharge interval decreased. After adding 3 lmol/L of the GABAAreceptor agonist muscimol, PIDs and IDs disappeared, and IIDs remained. Further, the application of 10 lmol/L muscimol abolished all the epileptiform discharges. When the GABAAreceptor antagonist bicuculline was applied at 10 lmol/L, IIDs and PIDs disappeared, and IDs remained at decreased intervals. These results indicated that there are dynamic changes in the hippocampal network preceding the onset of IDs, and GABAAreceptor activity suppresses the transition from IIDs to IDs in juvenile mouse hippocampus. 展开更多
关键词 Epileptiform discharge Gamma-aminobutyric acid BICUCULLINE MUSCIMOL Micro-electrode array Hippocampal slice
原文传递
Spatiotemporal dynamics of high-K^+-induced epileptiform discharges in hippocampal slice and the effects of valproate 被引量:5
2
作者 Jian-Sheng Liu Jing-Bo Li +4 位作者 xin-wei gong Hai-Qing gong Pu-Ming Zhang Pei-Ji Liang Qin-Chi Lu 《Neuroscience Bulletin》 SCIE CAS CSCD 2013年第1期28-36,共9页
The epileptic seizure is a dynamic process involving a rapid transition from normal activity to a state of hypersynchronous neuronal discharges. Here we investigated the network properties of epileptiform discharges i... The epileptic seizure is a dynamic process involving a rapid transition from normal activity to a state of hypersynchronous neuronal discharges. Here we investigated the network properties of epileptiform discharges in hippocampal slices in the presence of high K + concentration (8.5 mmol/L) in the bath, and the effects of the anti-epileptic drug valproate (VPA) on epileptiform discharges, using a microelectrode array. We demonstrated that epileptiform discharges were predominantly initiated from the stratum pyramidale layer of CA3a-b and propagated bi-directionally to CA1 and CA3c. Disconnection of CA3 from CA1 abolished the discharges in CA1 without disrupting the initiation of discharges in CA3. Further pharmacological experiments showed that VPA at a clinically relevant concentration (100 μmol/L) suppressed the propagation speed but not the rate or duration of high-K+-induced discharges. Our findings suggest that pacemakers exist in the CA3a-b region for the generation of epileptiform discharges in the hippocampus. VPA reduces the conduction of such discharges in the network by reducing the propagation speed. 展开更多
关键词 epileptiform discharges hippocampal slices microelectrode array valproate
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部