期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs 被引量:6
1
作者 Chen-chen Zhou Qiu-chan Xiong +7 位作者 xin-xing zhu Wen Du Peng Deng Xiao-bing Li Yi-zhou Jiang Shu-juan Zou Cun-yu Wang Quan Yuan 《Bone Research》 SCIE CAS CSCD 2017年第3期207-216,共10页
AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in su... AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFF1 and AFF4 regulate gene transcription through elongation and chromatln remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFFI regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFFl-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs.AFF1 and AFF4 belong to the AFF (AF4/FMR2) family of proteins, which function as scaffolding proteins linking two different transcription elongation factors, positive elongation factor b (P-TEFb) and ELL1/2, in super elongation complexes (SECs). Both AFFI and AFF4 regulate gene transcription through elongation and chromatln remodeling. However, their function in the osteogenic differentiation of mesenchymal stem cells (MSCs) is unknown. In this study, we show that small interfering RNA (siRNA)-mediated depletion of AFF1 in human MSCs leads to increased alkaline phosphatase (ALP) activity, enhanced mineralization and upregulated expression of osteogenic-related genes. On the contrary, depletion of AFF4 significantly inhibits the osteogenic potential of MSCs. In addition, we confirm that overexpression of AFF1 and AFF4 differentially affects osteogenic differentiation in vitro and MSC-mediated bone formation in vivo. Mechanistically, we find that AFFI regulates the expression of DKK1 via binding to its promoter region. Depletion of DKK1 in HA-AFFl-overexpressing MSCs abrogates the impairment of osteogenic differentiation. Moreover, we detect that AFF4 is enriched in the promoter region of ID1. AFF4 knockdown blunts the BRE luciferase activity, SP7 expression and ALP activity induced by BMP2 treatment. In conclusion, our data indicate that AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs. 展开更多
关键词 AFF1 and AFF4 differentially regulate the osteogenic differentiation of human MSCs FIGURE PCR RT ALP
下载PDF
Super enhancer inhibitors suppress MYC driven transcriptional amplification and tumor progression in osteosarcoma 被引量:6
2
作者 Demeng Chen Zhiqiang Zhao +13 位作者 Zixin Huang Du-Chu Chen xin-xing zhu Yi-Ze Wang Ya-Wei Yan Shaojun Tang Subha Madhavan Weiyi Ni Zhan-peng Huang Wen Li Weidong Ji Huangxuan Shen Shuibin Lin Yi-Zhou Jiang 《Bone Research》 CAS CSCD 2018年第2期197-203,共7页
Osteosarcoma is the most common primary bone sarcoma that mostly occurs in young adults. The causes of osteosarcoma are heterogeneous and still not fully understood. Identification of novel, important oncogenic factor... Osteosarcoma is the most common primary bone sarcoma that mostly occurs in young adults. The causes of osteosarcoma are heterogeneous and still not fully understood. Identification of novel, important oncogenic factors in osteosarcoma and development of better, effective therapeutic approaches are in urgent need for better treatment of osteosarcoma patients. In this study, we uncovered that the oncogene MYC is significantly upregulated in metastastic osteosarcoma samples. In addition, high MYC expression is associated with poor survival of osteosarcoma patients. Analysis of MYC targets in osteosarcoma revealed that most of the osteosarcoma super enhancer genes are bound by MYC. Treatment of osteosarcoma cells with super enhancer inhibitors THZ1 and JQ1 effectively suppresses the proliferation, migration, and invasion of osteosarcoma cells. Mechanistically,THZ1 treatment suppresses a large group of super enhancer containing MYC target genes including CDK6 and TGFB2. These findings revealed that the MYC-driven super enhancer signaling is crucial for the osteosarcoma tumorigenesis and targeting the MYC/super enhancer axis represents as a promising therapeutic strategy for treatment of osteosarcoma patients. 展开更多
关键词 Super enhancer inhibitors suppress MYC driven transcriptional amplification tumor progression OSTEOSARCOMA
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部