The ventral part of the anteromedial thalamic nucleus(AMv)is in a position to convey information to the cortico-hippocampal-amygdalar circuit involved in the processing of fear memory.Corticotropin-releasing-factor(CR...The ventral part of the anteromedial thalamic nucleus(AMv)is in a position to convey information to the cortico-hippocampal-amygdalar circuit involved in the processing of fear memory.Corticotropin-releasing-factor(CRF)neurons are closely associated with the regulation of stress and fear.However,few studies have focused on the role of thalamic CRF neurons in fear memory.In the present study,using a conditioned fear paradigm in CRF transgenic mice,we found that the c-Fos protein in the AMv CRF neurons was significantly increased after cued fear expression.Chemogenetic activation of AMv CRF neurons enhanced cued fear expression,whereas inhibition had the opposite effect on the cued fear response.Moreover,chemogenetic manipulation of AMv CRF neurons did not affect fear acquisition or contextual fear expression.In addition,anterograde tracing of projections revealed that AMv CRF neurons project to wide areas of the cerebral cortex and the limbic system.These results uncover a critical role of AMv CRF neurons in the regulation of conditioned fear memory.展开更多
基金This work was supported by the National Natural Science Foundation of China(32000716 and 91732304)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB02030001).
文摘The ventral part of the anteromedial thalamic nucleus(AMv)is in a position to convey information to the cortico-hippocampal-amygdalar circuit involved in the processing of fear memory.Corticotropin-releasing-factor(CRF)neurons are closely associated with the regulation of stress and fear.However,few studies have focused on the role of thalamic CRF neurons in fear memory.In the present study,using a conditioned fear paradigm in CRF transgenic mice,we found that the c-Fos protein in the AMv CRF neurons was significantly increased after cued fear expression.Chemogenetic activation of AMv CRF neurons enhanced cued fear expression,whereas inhibition had the opposite effect on the cued fear response.Moreover,chemogenetic manipulation of AMv CRF neurons did not affect fear acquisition or contextual fear expression.In addition,anterograde tracing of projections revealed that AMv CRF neurons project to wide areas of the cerebral cortex and the limbic system.These results uncover a critical role of AMv CRF neurons in the regulation of conditioned fear memory.