期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Novel coumarone-derived(S,E)-4-(4-fluorobenzylidene)-3-phenylchroman-3-ol inhibits muscle-invasive bladder cancer cells by repressing the S and G2 cell cycle phases
1
作者 xin-yi han A-Dan Li +3 位作者 Fa-Ying Zhou Chao Li Guo-Du Liu Yong Xia 《Precision Medicine Research》 2023年第2期8-15,共8页
Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppres... Background:This study aimed to select compounds with unique inhibitory effects on muscle-invasive bladder cancer(MIBC)from coumarone derivatives with similar parent nuclear structures and to reveal their tumor-suppressive effects using various approaches.Methods:Bladder cancer cell lines SW780 and T24,as well as human normal bladder epithelial cell line SV-HUC-1 were selected as the study model,and these urinary system cells were co-incubated with various concentrations of(S,E)-4-(4-methylbenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-isocyanobenzylidene)-3-phenylchroman-3-ol,(S,E)-4-(4-fluorobenzylidene)-3-phenylchroman-3-ol(FPO),and(S,E)-3-phenyl-4-(4-(trifluoromethoxy)benzylidene)chroman-3-ol.Cell activity was detected using cell counting kit-8.FPO showed the strongest inhibitory effect on MIBC cells;therefore,it was selected for further experiments.We monitored the FPO-induced T24 cell morphological changes with an inverted microscope.The FPO-inhibited migration of T24 cells was examined using a cell scratch assay.We detected the clonogenic ability of T24 cells through a clone formation test and evaluated their proliferative ability using a 5-ethynyl-2’-deoxyuridine fluorescence staining kit.The inhibitory effect of FPO against the cell cycle was monitored using flow cytometry,and its suppressive effect on the DNA replication ability of T24 cells was detected using double fluorescence staining(Ki67 and phalloidin).Results:Among the four candidate coumarone derivatives,FPO showed the most significant inhibitory effect on MIBC cells and was less toxic to normal urothelial cells.FPO inhibited T24 cell growth in time and dose-dependent manners(the half-inhibitory concentration is 8μM).FPO significantly repressed the proliferation,migration,and clonogenic ability of bladder cancer T24 cells.Cell mobility was significantly inhibited by FPO:30μM FPO almost completely repressed migration occurred at after 24 h treatment.Moreover,FPO significantly suppressed the clonogenicity of bladder cancer cells in a dose-dependent manner.Mechanistically,FPO targeted the cell cycle,arresting the S and G2 phases on bladder cancer T24 cells.Conclusion:We discovered a novel anticancer chemical,FPO,and proposed a potential mechanism,through which it suppresses MIBC T24 cells by repressing the cell cycle in the S and G2 phases.This study contributes to the development of novel anticancer drugs for MIBC. 展开更多
关键词 muscle-invasive bladder cancer cell proliferation cell cycle DNA replication coumarone derivate
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部