The tumor microenvironment is a complex network of cells,extracellular matrix,and signaling molecules that plays a critical role in tumor progression and metastasis.Lymphatic and blood vessels are major routes for sol...The tumor microenvironment is a complex network of cells,extracellular matrix,and signaling molecules that plays a critical role in tumor progression and metastasis.Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits.However,recent studies have shown that lymphatic endothelial cells(LECs)and blood endothelial cells(BECs)also play multifaceted roles in the tumor microenvironment beyond their structural functions,particularly in hepatocellular carcinoma(HCC).This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC,including their involvement in angiogenesis,immune modulation,lymphangiogenesis,and metastasis.By providing a detailed account of the complex interplay between LECs,BECs,and tumor cells,this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.展开更多
Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the a...Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications.展开更多
Optical enhancement cavity(OEC)is a powerful tool for fundamental research and diagnostics.In this paper,the progress of a continuous-wave OEC to realize of megawatt cavity for a novel light source based on a steady-s...Optical enhancement cavity(OEC)is a powerful tool for fundamental research and diagnostics.In this paper,the progress of a continuous-wave OEC to realize of megawatt cavity for a novel light source based on a steady-state microbunching(SSMB)mechanism,is reported.After efficiently suppressing all external noise and optimizing the alignment,mode-matching,and polarization matching,stable and long-term locking is achieved with the help of two feedback loops.The modal instability phenomenon caused by the surface thermoelastic deformation is observed.A pair of D-shape mirrors are utilized to remove the high-order modes.Finally,an intra-cavity average power of 30 kW is reached.展开更多
基金Supported by National Natural Science Foundation of China,No.81702923,and No.81971503Open Project of State Key Laboratory of Medical Immunology,No.NKLMI2023K03+1 种基金Shanghai Shen Kang Hospital Development Center Clinical Science and Technology Innovation Project,No.SHDC12020104Basic Medical Research Project of Naval Medical University,No.2022QN072.
文摘The tumor microenvironment is a complex network of cells,extracellular matrix,and signaling molecules that plays a critical role in tumor progression and metastasis.Lymphatic and blood vessels are major routes for solid tumor metastasis and essential parts of tumor drainage conduits.However,recent studies have shown that lymphatic endothelial cells(LECs)and blood endothelial cells(BECs)also play multifaceted roles in the tumor microenvironment beyond their structural functions,particularly in hepatocellular carcinoma(HCC).This comprehensive review summarizes the diverse roles played by LECs and BECs in HCC,including their involvement in angiogenesis,immune modulation,lymphangiogenesis,and metastasis.By providing a detailed account of the complex interplay between LECs,BECs,and tumor cells,this review aims to shed light on future research directions regarding the immune regulatory function of LECs and potential therapeutic targets for HCC.
基金Project supported by National Key Research and Development Program of China (Grant No.2022YFA1603403)。
文摘Finesse is a critical parameter for describing the characteristics of an optical enhancement cavity(OEC). This paper first presents a review of finesse measurement techniques, including a comparative analysis of the advantages, disadvantages, and potential limitations of several main methods from both theoretical and practical perspectives. A variant of the existing method called the free spectral range(FSR) modulation method is proposed and compared with three other finesse measurement methods, i.e., the fast-switching cavity ring-down(CRD) method, the rapidly swept-frequency(SF) CRD method, and the ringing effect method. A high-power OEC platform with a high finesse of approximately 16000 is built and measured with the four methods. The performance of these methods is compared, and the results show that the FSR modulation method and the fast-switching CRD method are more suitable and accurate than the other two methods for high-finesse OEC measurements. The CRD method and the ringing effect method can be implemented in open loop using simple equipment and are easy to perform. Additionally, recommendations for selecting finesse measurement methods under different conditions are proposed, which benefit the development of OEC and its applications.
基金the Fund from Tsinghua University Initiative Scientific Research Program,China(Grant No.20191081195).
文摘Optical enhancement cavity(OEC)is a powerful tool for fundamental research and diagnostics.In this paper,the progress of a continuous-wave OEC to realize of megawatt cavity for a novel light source based on a steady-state microbunching(SSMB)mechanism,is reported.After efficiently suppressing all external noise and optimizing the alignment,mode-matching,and polarization matching,stable and long-term locking is achieved with the help of two feedback loops.The modal instability phenomenon caused by the surface thermoelastic deformation is observed.A pair of D-shape mirrors are utilized to remove the high-order modes.Finally,an intra-cavity average power of 30 kW is reached.