Few-shot intent detection is a practical challenge task,because new intents are frequently emerging and collecting large-scale data for them could be costly.Meta-learning,a promising technique for leveraging data from...Few-shot intent detection is a practical challenge task,because new intents are frequently emerging and collecting large-scale data for them could be costly.Meta-learning,a promising technique for leveraging data from previous tasks to enable efficient learning of new tasks,has been a popular way to tackle this problem.However,the existing meta-learning models have been evidenced to be overfitting when the meta-training tasks are insufficient.To overcome this challenge,we present a novel self-supervised task augmentation with meta-learning framework,namely STAM.Firstly,we introduce the task augmentation,which explores two different strategies and combines them to extend meta-training tasks.Secondly,we devise two auxiliary losses for integrating self-supervised learning into meta-learning to learn more generalizable and transferable features.Experimental results show that STAM can achieve consistent and considerable performance improvement to existing state-of-the-art methods on four datasets.展开更多
Graph neural networks(GNNs)have shown great power in learning on graphs.However,it is still a challenge for GNNs to model information faraway from the source node.The ability to preserve global information can enhance...Graph neural networks(GNNs)have shown great power in learning on graphs.However,it is still a challenge for GNNs to model information faraway from the source node.The ability to preserve global information can enhance graph representation and hence improve classification precision.In the paper,we propose a new learning framework named G-GNN(Global information for GNN)to address the challenge.First,the global structure and global attribute features of each node are obtained via unsupervised pre-training,and those global features preserve the global information associated with the node.Then,using the pre-trained global features and the raw attributes of the graph,a set of parallel kernel GNNs is used to learn different aspects from these heterogeneous features.Any general GNN can be used as a kernal and easily obtain the ability of preserving global information,without having to alter their own algorithms.Extensive experiments have shown that state-of-the-art models,e.g.,GCN,GAT,Graphsage and APPNP,can achieve improvement with G-GNN on three standard evaluation datasets.Specially,we establish new benchmark precision records on Cora(84.31%)and Pubmed(80.95%)when learning on attributed graphs.展开更多
基金the National Natural Science Foundation of China under Grant Nos.61936012 and 61976114。
文摘Few-shot intent detection is a practical challenge task,because new intents are frequently emerging and collecting large-scale data for them could be costly.Meta-learning,a promising technique for leveraging data from previous tasks to enable efficient learning of new tasks,has been a popular way to tackle this problem.However,the existing meta-learning models have been evidenced to be overfitting when the meta-training tasks are insufficient.To overcome this challenge,we present a novel self-supervised task augmentation with meta-learning framework,namely STAM.Firstly,we introduce the task augmentation,which explores two different strategies and combines them to extend meta-training tasks.Secondly,we devise two auxiliary losses for integrating self-supervised learning into meta-learning to learn more generalizable and transferable features.Experimental results show that STAM can achieve consistent and considerable performance improvement to existing state-of-the-art methods on four datasets.
基金partially supported by the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No.18kJB510010the Social Science Foundation of Jiangsu Province of China under Grant No.19TQD002the National Nature Science Foundation of China under Grant No.61976114.
文摘Graph neural networks(GNNs)have shown great power in learning on graphs.However,it is still a challenge for GNNs to model information faraway from the source node.The ability to preserve global information can enhance graph representation and hence improve classification precision.In the paper,we propose a new learning framework named G-GNN(Global information for GNN)to address the challenge.First,the global structure and global attribute features of each node are obtained via unsupervised pre-training,and those global features preserve the global information associated with the node.Then,using the pre-trained global features and the raw attributes of the graph,a set of parallel kernel GNNs is used to learn different aspects from these heterogeneous features.Any general GNN can be used as a kernal and easily obtain the ability of preserving global information,without having to alter their own algorithms.Extensive experiments have shown that state-of-the-art models,e.g.,GCN,GAT,Graphsage and APPNP,can achieve improvement with G-GNN on three standard evaluation datasets.Specially,we establish new benchmark precision records on Cora(84.31%)and Pubmed(80.95%)when learning on attributed graphs.