BACKGROUND The emergency department(ED)plays a critical role in establishing artificial airways and implementing mechanical ventilation.Managing airbags in the ED presents a prime opportunity to mitigate the risk of v...BACKGROUND The emergency department(ED)plays a critical role in establishing artificial airways and implementing mechanical ventilation.Managing airbags in the ED presents a prime opportunity to mitigate the risk of ventilator-associated pneumonia.Nonetheless,existing research has largely overlooked the understanding,beliefs,and practical dimensions of airway airbag management among ED nurses,with a predominant focus on intensive care unit nurses.AIM To investigate the current status of ED nurses'knowledge,beliefs,and practical behaviors in airway airbag management and their influencing factors.METHODS A survey was conducted from July 10th to August 10th,2023,using convenience sampling on 520 ED nurses from 15 tertiary hospitals and 5 sary hospitals in Shanghai.Pathway analysis was utilized to analyze the influencing factors.RESULTS The scores for ED nurses'airway airbag management knowledge were 60.26±23.00,belief was 88.65±13.36,and behavior was 75.10±19.84.The main influencing factors of airbag management knowledge included participation in specialized nurse or mechanical ventilation training,department,and work experience in the department.Influencing factors of airbag management belief comprised knowledge,department,and participation in specialized nurse or mechanical ventilation training.Primary influencing factors of airbag management behavior included knowledge,belief,department,participation in specialized nurse or mechanical ventilation training,and professional title.The belief in airbag management among ED nurses acted as a partial mediator between knowledge and behavior,with a total effect value of 0.513,and an indirect effect of 0.085,constituting 16.6%of the total effect.CONCLUSION ED nurses exhibit a positive attitude toward airbag management with relatively standardized practices,yet there remains room for improvement in their knowledge levels.Nursing managers should implement interventions tailored to the characteristics of ED nurses'airbag management knowledge,beliefs,and practices to enhance their airbag management proficiency.展开更多
The compression behavior of the lattice-walled tubes under variable strain rates are investigated by numerical simulation,and the stress-strain relationship of the structure under quasi-static loading is theoretically...The compression behavior of the lattice-walled tubes under variable strain rates are investigated by numerical simulation,and the stress-strain relationship of the structure under quasi-static loading is theoretically analyzed.The finite element software LS-DYNA is used to simulate the structure established by the beam element,and the critical impact velocity is obtained when the structure collapses layer by layer.According to the plastic hinge theory and considering the combined action of the beam's bending moment and axial force in the structure,the stress-strain relationship of the structure under quasi-static loading is derived and compared with the experimental results.The numerical simulation results reveal that the structure of the single-layer gradient tube(SGC)does not undergo shear deformation under quasi-static and low-speed impact.The critical speed of the gradient square tube(GS)is higher than that of a cylindrical tube.The theoretical model can correctly reflect the mechanical response of the structure under uniaxial compression.展开更多
The synthesis of colloidal telluride semiconductor nanocrystals(CT-SNCs)is more challenging than that of chalcogenides,due to the smaller electron affinity of tellurium than that of sulfur and selenium,which is attrib...The synthesis of colloidal telluride semiconductor nanocrystals(CT-SNCs)is more challenging than that of chalcogenides,due to the smaller electron affinity of tellurium than that of sulfur and selenium,which is attributed to its metalloid property.While some new potential strategies were developing with the increasing demand of CT-SNCs,the cation exchange reaction(CER)has particularly become a new strategy to synthesize highquality CT-SNCs and their corresponded hetero-nanostructures.This review summarizes the synthesis strategies of CT-SNCs,including traditional methods and new methods with emphasis on CERs,and their resulting CTSNCs with well-controlling size,shape,composition,crystallization and hetero-interfaces cooperatively.The progressive synthesis methods give rise to the excellent optical properties of CT-SNCs.This review also covers the recent progress of their applications in the field of photoelectric detection,catalysis,batteries and biology.The new hybrid CT-SNCs nanostructures are also emphasized and systematically discussed due to their enhanced properties.展开更多
A diquinoxalinopyrene (DQP) derivative and the corresponding oligomers (PDQPs) with Mn of ca. 3300, 4200, 5600, and 7300 have been synthesized. It is found that the band gaps and highest occupied molecular orbital...A diquinoxalinopyrene (DQP) derivative and the corresponding oligomers (PDQPs) with Mn of ca. 3300, 4200, 5600, and 7300 have been synthesized. It is found that the band gaps and highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels between DQP and its homopolymers only have a slight difference, implying a limited conjugation extension achieved from unimer to heptamer. The DFT calculation is in accordance with the experimental results. It reveals that the nodal planes are across the 2,11-positions in the LUMO and/or HOMO of DQP, dimer and trimer, which can be used to explain this special phenomenon.展开更多
文摘BACKGROUND The emergency department(ED)plays a critical role in establishing artificial airways and implementing mechanical ventilation.Managing airbags in the ED presents a prime opportunity to mitigate the risk of ventilator-associated pneumonia.Nonetheless,existing research has largely overlooked the understanding,beliefs,and practical dimensions of airway airbag management among ED nurses,with a predominant focus on intensive care unit nurses.AIM To investigate the current status of ED nurses'knowledge,beliefs,and practical behaviors in airway airbag management and their influencing factors.METHODS A survey was conducted from July 10th to August 10th,2023,using convenience sampling on 520 ED nurses from 15 tertiary hospitals and 5 sary hospitals in Shanghai.Pathway analysis was utilized to analyze the influencing factors.RESULTS The scores for ED nurses'airway airbag management knowledge were 60.26±23.00,belief was 88.65±13.36,and behavior was 75.10±19.84.The main influencing factors of airbag management knowledge included participation in specialized nurse or mechanical ventilation training,department,and work experience in the department.Influencing factors of airbag management belief comprised knowledge,department,and participation in specialized nurse or mechanical ventilation training.Primary influencing factors of airbag management behavior included knowledge,belief,department,participation in specialized nurse or mechanical ventilation training,and professional title.The belief in airbag management among ED nurses acted as a partial mediator between knowledge and behavior,with a total effect value of 0.513,and an indirect effect of 0.085,constituting 16.6%of the total effect.CONCLUSION ED nurses exhibit a positive attitude toward airbag management with relatively standardized practices,yet there remains room for improvement in their knowledge levels.Nursing managers should implement interventions tailored to the characteristics of ED nurses'airbag management knowledge,beliefs,and practices to enhance their airbag management proficiency.
基金the financial support of the National Natural Science Foundation of China(11972092,12002049,11802028)the Project of State Key Laboratory of Explosion Science and Technology(YBKT18-07,KFJJ19-12M).
文摘The compression behavior of the lattice-walled tubes under variable strain rates are investigated by numerical simulation,and the stress-strain relationship of the structure under quasi-static loading is theoretically analyzed.The finite element software LS-DYNA is used to simulate the structure established by the beam element,and the critical impact velocity is obtained when the structure collapses layer by layer.According to the plastic hinge theory and considering the combined action of the beam's bending moment and axial force in the structure,the stress-strain relationship of the structure under quasi-static loading is derived and compared with the experimental results.The numerical simulation results reveal that the structure of the single-layer gradient tube(SGC)does not undergo shear deformation under quasi-static and low-speed impact.The critical speed of the gradient square tube(GS)is higher than that of a cylindrical tube.The theoretical model can correctly reflect the mechanical response of the structure under uniaxial compression.
基金financially supported by the National Natural Science Foundation of China (Nos.22105116, 51872030,51631001,51702016,51902023 and 21801015)the Joint R&D Plan of Hong Kong,Macao,Taiwan and Beijing (No. Z191100001619002)+1 种基金the Fundamental Research Funds for the Central Universities (No.2017CX01003)Beijing Institute of Technology Research Fund Program for Young Scholars
文摘The synthesis of colloidal telluride semiconductor nanocrystals(CT-SNCs)is more challenging than that of chalcogenides,due to the smaller electron affinity of tellurium than that of sulfur and selenium,which is attributed to its metalloid property.While some new potential strategies were developing with the increasing demand of CT-SNCs,the cation exchange reaction(CER)has particularly become a new strategy to synthesize highquality CT-SNCs and their corresponded hetero-nanostructures.This review summarizes the synthesis strategies of CT-SNCs,including traditional methods and new methods with emphasis on CERs,and their resulting CTSNCs with well-controlling size,shape,composition,crystallization and hetero-interfaces cooperatively.The progressive synthesis methods give rise to the excellent optical properties of CT-SNCs.This review also covers the recent progress of their applications in the field of photoelectric detection,catalysis,batteries and biology.The new hybrid CT-SNCs nanostructures are also emphasized and systematically discussed due to their enhanced properties.
基金the National Natural Science Foundation of China(No.21174042)Fund of Project on the Integration of Industry,Education and Research of Guangdong Province(No.2013B090500072)
文摘A diquinoxalinopyrene (DQP) derivative and the corresponding oligomers (PDQPs) with Mn of ca. 3300, 4200, 5600, and 7300 have been synthesized. It is found that the band gaps and highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) levels between DQP and its homopolymers only have a slight difference, implying a limited conjugation extension achieved from unimer to heptamer. The DFT calculation is in accordance with the experimental results. It reveals that the nodal planes are across the 2,11-positions in the LUMO and/or HOMO of DQP, dimer and trimer, which can be used to explain this special phenomenon.