期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reduction of chromium oxides in stainless steel dust 被引量:1
1
作者 Yan-ling Zhang Wen-ming Guo xin-lei jia 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第6期573-581,共9页
The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered ... The recovery of metal oxides from stainless steel dust using C(graphite), SiFe, and Al as reductants was investigated under various conditions. The apparent distribution ratio of Cr(L Cr ′^m/s ) in the recovered metal and residual slag phases was defined as the major performance metric. The results show that the recovery ratio of metals increases as the ratio of CaO :SiO2 by mass in the residual slag increases to 1.17. The residual content of metals in the slag decreases as the Al2O3 content of the slag is increased from approximately 8wt% to 10wt%. The recovery ratio of Cr increases with increasing L Cr ′^ m/s , and a linear relationship between L Cr ′^m/s and the activity coefficient ratio of CrO in the slag and the recovered metal phase is observed. The combination of C and SiFe or Al as the reducing agents reveals that Si is the more effective coreductant. 展开更多
关键词 stainless steel dust chromium oxides recovery apparent distribution ratio activity coefficient
下载PDF
Phenylpropanoid Derivatives Are Essential Components of Sporopollenin in Vascular Plants 被引量:3
2
作者 Jinp-Shi Xue Baocai Zhang +14 位作者 HuaDong Zhan Yong-Lin Lv xin-lei jia TianHua Wang Nai-Ying Yang Yu-Xia Lou Zai-Bao Zhang Wen-Jing Hu Jinshan Gui jianguo Cao Ping Xu Yihua Zhou Jin-Feng Hu Laigeng Li Zhong-Nan Yang 《Molecular Plant》 SCIE CAS CSCD 2020年第11期1644-1653,共10页
The outer wall of pollen and spores,namely the exine,is composed of sporopollenin,which is highly resistant to chemical reagents and enzymes.In this study,we demonstrated that phenylpropanoid pathway derivatives are e... The outer wall of pollen and spores,namely the exine,is composed of sporopollenin,which is highly resistant to chemical reagents and enzymes.In this study,we demonstrated that phenylpropanoid pathway derivatives are essential components of sporopollenin in seed plants.Spectral analyses showed that the autofluorescence of Lilium and Arabidopsis sporopollenin is similar to that of lignin.Thioacidolysis and NMR analyses of pollen from Lilium and Cryptomeria further revealed that the sporopollenin of seed plants contains phenylpropanoid derivatives,including p-hydroxybenzoate(p-BA),p-coumarate(p-CA),ferulate(FA),and lignin guaiacyl(G)units.The phenylpropanoid pathway is expressed in the tapetum in Arabidopsis,consistent with the fact that the sporopollenin precursor originates from the tapetum.Further germination and comet assays showed that this pathway plays an important role in protection of pollen against UV radiation.In the pteridophyte plant species Ophioglossum vulgatum and Lycopodium clavata,phenylpropanoid derivatives including p-BA and p-CA were also detected,but G units were not.Taken together,our results indicate that phenylpropanoid derivatives are essential for sporopollenin synthesis in vascular plants.In addition,sporopollenin autofluorescence spectra of bryophytes,such as Physcomitrella and Haplocladium,exhibit distinct characteristics compared with those of vascular plants,indicating the diversity of sporopollenin among land plants. 展开更多
关键词 SPOROPOLLENIN pollen cell wall phenylpropanoid pathway
原文传递
Delayed callose degradation restores the fertility of multiple P/TGMS lines in Arabidopsis 被引量:1
3
作者 Kai-Qi Wang Ya-Hui Yu +11 位作者 xin-lei jia Si-Da Zhou Fang Zhang Xin Zhao Ming-Yue Zhai Yi Gong Jie-Yang Lu Yuyi Guo Nai-Ying Yang Shui Wang Xiao-Feng Xu Zhong-Nan Yang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第3期717-730,共14页
Photoperiod/temperature-sensitive genic male sterility(P/TGMS)is widely applied for improving crop production.Previous investigations using the reversible male sterile(rvms)mutant showed that slow development is a gen... Photoperiod/temperature-sensitive genic male sterility(P/TGMS)is widely applied for improving crop production.Previous investigations using the reversible male sterile(rvms)mutant showed that slow development is a general mechanism for restoring fertility to P/TGMS lines in Arabidopsis.In this work,we isolated a restorer of rvms–2(res3),as the male sterility of rvms–2 was rescued by res3.Phenotype analysis and molecular cloning show that a point mutation in UPEX1 l in res3 leads to delayed secretion of callase A6 from the tapetum to the locule and tetrad callose wall degradation.Electrophoretic mobility shift assay and chromatin immunoprecipitation analysis demonstrated that the tapetal transcription factor ABORTED MICROSPORES directly regulates UPEX1 expression,revealing a pathway for tapetum secretory function.Early degradation of the callose wall in the transgenic line eliminated the fertility restoration effect of res3.The fertility of multiple known P/TGMS lines with pollen wall defects was also restored by res3.We propose that the remnant callose wall may broadly compensate for the pollen wall defects of P/TGMS lines by providing protection for pollen formation.A cellular mechanism is proposed to explain how slow development restores the fertility of P/TGMS lines in Arabidopsis. 展开更多
关键词 callose degradation fertility restoration pollen wall pollen development P/TGMS
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部