Objective:Metabolic disorders are regarded as hallmarks of multiple myeloma(MM)and are responsible for rapid cancer cell proliferation and tumor growth.However,the exact biological roles of metabolites in MM cells hav...Objective:Metabolic disorders are regarded as hallmarks of multiple myeloma(MM)and are responsible for rapid cancer cell proliferation and tumor growth.However,the exact biological roles of metabolites in MM cells have not been fully explored.This study aimed to explore the feasibility and clinical significance of lactate for MM and investigate the molecular mechanism of lactic acid(Lac)in the proliferation of myeloma cells and cell sensitivity to bortezomib(BTZ).Methods:Metabolomic analysis of the serum was carried out to obtain metabolites expression and clinical characteristics in MM patients.The CCK8 assay and flow cytometry were used to detect cell proliferation,apoptosis,and cell cycle changes.Western blotting was used to detect the potential mechanism and apoptosis-and cycle-related protein changes.Results:Lactate was highly expressed in both the peripheral blood and bone marrow of MM patients.It was significantly correlated with Durie-Salmon Staging(DS Staging)and the International Staging System(ISS Staging)and the serum and urinary involved/uninvolved free light chain ratios.Patients with relatively high lactate levels had a poor treatment response.Moreover,in vitro experiments showed that Lac could promote the proliferation of tumor cells and decrease the proportion of G0/G1-phase cells,which was accompanied by an increased proportion of S-phase cells.In addition,Lac could decrease tumor sensitivity to BTZ by disrupting the expression of nuclear factor kappa B subunit 2(NFκB2)and Re1B.Conclusion:Metabolic changes are important in MM cell proliferation and treatment response;lactate could be used as a biomarker in MM and as a therapeutic target to overcome cell resistance to BTZ.展开更多
As a special quantum node in a quantum network,the quantum router plays an important role in storing and transferring quantum information.In this paper,we propose a quantum router scheme based on asymmetric intercavit...As a special quantum node in a quantum network,the quantum router plays an important role in storing and transferring quantum information.In this paper,we propose a quantum router scheme based on asymmetric intercavity couplings and a three-levelΛ-type atomic system.This scheme implements the quantum routing capability very well.It can perfectly transfer quantum information from one quantum channel to another.Compared with the previous quantum routing scheme,our proposed scheme can achieve the transfer rate of single photons from one quantum channel to another quantum channel reaching 100%,the high transfer rate is located in the almost quadrant regions with negative values of the two variablesλa andλb,and their maximum values Tu^b+Td^b=1 emerge in the center pointλa=λb=-1.Therefore,it is possibly feasible to efficiently enhance the routing capability of the single photons between two channels by adjusting the inter-resonator couplings,and the asymmetric intercavity coupling provides a new method for achieving high-fidelity quantum routers.展开更多
基金supported by grants from the National Natural Science Foundation of China(No.82070208)the Military Clinical Medical Innovation Project of Xinqiao Hospital(No.2021JSLC0003)+2 种基金the National Natural Science Foundation of Chongqing(No.cstc2020jcyjmsxmX0433)the Translational Research Grant of NCRCH(Nos.2020ZKZC02,2021WWB05)the Chongqing Science and Health Joint Medical Research Project(Nos.2021MSXM226,2023QNXM047).
文摘Objective:Metabolic disorders are regarded as hallmarks of multiple myeloma(MM)and are responsible for rapid cancer cell proliferation and tumor growth.However,the exact biological roles of metabolites in MM cells have not been fully explored.This study aimed to explore the feasibility and clinical significance of lactate for MM and investigate the molecular mechanism of lactic acid(Lac)in the proliferation of myeloma cells and cell sensitivity to bortezomib(BTZ).Methods:Metabolomic analysis of the serum was carried out to obtain metabolites expression and clinical characteristics in MM patients.The CCK8 assay and flow cytometry were used to detect cell proliferation,apoptosis,and cell cycle changes.Western blotting was used to detect the potential mechanism and apoptosis-and cycle-related protein changes.Results:Lactate was highly expressed in both the peripheral blood and bone marrow of MM patients.It was significantly correlated with Durie-Salmon Staging(DS Staging)and the International Staging System(ISS Staging)and the serum and urinary involved/uninvolved free light chain ratios.Patients with relatively high lactate levels had a poor treatment response.Moreover,in vitro experiments showed that Lac could promote the proliferation of tumor cells and decrease the proportion of G0/G1-phase cells,which was accompanied by an increased proportion of S-phase cells.In addition,Lac could decrease tumor sensitivity to BTZ by disrupting the expression of nuclear factor kappa B subunit 2(NFκB2)and Re1B.Conclusion:Metabolic changes are important in MM cell proliferation and treatment response;lactate could be used as a biomarker in MM and as a therapeutic target to overcome cell resistance to BTZ.
基金supported by the Project of Introduction and Cultivation for Young Innovative Talents in Colleges and Universities of Shandong Province。
文摘As a special quantum node in a quantum network,the quantum router plays an important role in storing and transferring quantum information.In this paper,we propose a quantum router scheme based on asymmetric intercavity couplings and a three-levelΛ-type atomic system.This scheme implements the quantum routing capability very well.It can perfectly transfer quantum information from one quantum channel to another.Compared with the previous quantum routing scheme,our proposed scheme can achieve the transfer rate of single photons from one quantum channel to another quantum channel reaching 100%,the high transfer rate is located in the almost quadrant regions with negative values of the two variablesλa andλb,and their maximum values Tu^b+Td^b=1 emerge in the center pointλa=λb=-1.Therefore,it is possibly feasible to efficiently enhance the routing capability of the single photons between two channels by adjusting the inter-resonator couplings,and the asymmetric intercavity coupling provides a new method for achieving high-fidelity quantum routers.