To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar sy...To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively.展开更多
The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to...The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to make good use of yellow phosphorus slag as well as tackle with environment problems, safety problems, geological hazards, and high-cost issues during mining in Kaiyang Phosphorus Mine Group, Guizhou. The results show that yellow phosphorus slag can be used as the cement substitute for potential coagulation property. Quicklime, hydrated lime, and other alkaline substances can eliminate the high residual phosphorus to improve the initial strength of backfilling body. The recommended proportions (mass ratio) are 1:1 (yellow phosphorus slag:phosphorous gypsum), 1:4:10 (Portland cement:yellow phosphorus slag:phosphorous gypsum), and 1:4:10 (ultra fine powder:yellow phosphorus slag:phosphorous gypsum) with 5wt% of hydrated lime addition, 60wt% of solid materials, no fly ash addition, and good rheological properties. The hydration reaction involves hydration stage, solidifying stage, and strength stage with Ca(OH)2 as the activating agent. The reaction rates of yellow phosphorus slag, Portland cement, and ultrafine powder hydration with the increase of microstructure stability and initial strength.展开更多
We report a systematic study on magnetotransport properties of the single crystal of cadmium(Cd). When the applied magnetic field B is perpendicular to the current I, the resistivities for both directions(I ‖ a, I ‖...We report a systematic study on magnetotransport properties of the single crystal of cadmium(Cd). When the applied magnetic field B is perpendicular to the current I, the resistivities for both directions(I ‖ a, I ‖ c) show field induced metal-to-insulator-like transitions. The isothermal magnetoresistance(MR) at low temperatures increases approximately as the square of the magnetic field without any sign of saturation, and reaches up to 1140000% and 58000% at T = 2 K and B = 9 T for I ‖ a and I ‖ c, respectively. As the magnetic field rotates to parallel to the current, no sign of negative MR is observed for I ‖ a, while an obvious negative MR appears up to-70% at 2 K and 9 T for the current flowing along the c-axis, and the negative longitudinal MR shows a strong dependence of the electrode position on the single crystal. These results suggest that the negative longitudinal MR is caused by the dislocations formed in the process of crystal growing along the c-axis. Further studies are needed to clarify this point.展开更多
We report the transport properties of the CaAs_3 single crystal, which has been predicted to be a candidate for topological nodal-line semimetals. At ambient pressure, CaAs_3 exhibits semiconducting behavior with a sm...We report the transport properties of the CaAs_3 single crystal, which has been predicted to be a candidate for topological nodal-line semimetals. At ambient pressure, CaAs_3 exhibits semiconducting behavior with a small gap, while in some crystals containing tiny defects or impurities, a large "hump" in the resistivity is observed around 230 K. By applying hydrostatic pressure, the samples appear to a tendency towards metallic behavior, but not fully metallized up to 2 GPa.Further high pressure studies are needed to explore the topological characteristics for CaAs_3.展开更多
Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the mate...Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the materials after releasing the gate voltage VG at temperatures higher than the melting point of the selected ionic liquid. Here we show that a permanent superconductivity with transition temperature Tc of 24 and 15K is realized hi single crystals and polycrystalline samples of HfNCI and ZrNCI upon applying proper VG's at different temperatures. Reversible change between insulating and superconducting states can be obtained by applying positive and negative VG at low temperature such as 220K, whereas VG 's applied at 250K induce the irreversible superconducting transition. The upper critical field He2 of the superconducting states obtained at different gating temperatures shows similar temperature dependence. We propose a reasonable scenario that partial vacancy of Cl ions could be caused by applying proper VG's at slightly higher processing temperatures, which consequently results in a permanent electron doping in the system. Such a technique shows great potential to systematically tune the bulk electronic state in the similar two-dimensional systems.展开更多
The electrochemical behaviour and passive film properties of Fe-Cr-Mo-W-C-B-Y amorphous alloys in acetic acid solution were investigated. The potentiodynamic polarisation and Nyquist curves demonstrated that W additio...The electrochemical behaviour and passive film properties of Fe-Cr-Mo-W-C-B-Y amorphous alloys in acetic acid solution were investigated. The potentiodynamic polarisation and Nyquist curves demonstrated that W addition signifi- cantly enhanced the corrosion resistance. Mott-Schottky plots and angle-resolved X-ray photoelectron spectra indicated that passive films with different W contents exhibited dipolar (p-n) semiconducting characteristics separated by fiat-band potentials. The outer and inner oxide layers of the passive films were modified by reducing the acceptor and donor densities. Moreover, W addition favoured the formation of a thicker and more stable passive film to inhibit the dissolution of alloy elements.展开更多
Amorphous powder cores based on spherical (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder and their SiO2 layer prepared by in situ coating insulation process were investigated in detAll. These cores were characterized...Amorphous powder cores based on spherical (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder and their SiO2 layer prepared by in situ coating insulation process were investigated in detAll. These cores were characterized by scanning electron microscopy and X-ray diffraction analyses, and the results revealed that the surface layer of the amorphous powder was composed of SiO2 with uniform surface coverage. The thickness of the SiO2 insulating layer could be controlled by adjusting the tetraethyl orthosilicate (TEOS) content. By cold-pressing with epoxy resin under a pressure of 1800 MPa, a ring powder core with an outer diameter of 20.3 ram, inner diameter of 12.7 mm, and height of 5.3 mm was prepared. The FeSiBPNb composite core showed its best properties when the TEOS content was 2 mL/g (the volume of TEOS for each gram of (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder, mL/g), which showed good relative permeability in the high-frequency range of up to 10 MHz and a low core loss of 320 W/kg under the maximum magnetic flux density of 0.1 T and frequency of 100 kHz.展开更多
Manipulation of the internal architecture is essential for electromagnetic interference(EMI)shielding performance of metal-based coatings,which can address the electromagnetic pollution in large-size,complex geometrie...Manipulation of the internal architecture is essential for electromagnetic interference(EMI)shielding performance of metal-based coatings,which can address the electromagnetic pollution in large-size,complex geometries,and harsh environments.In this work,oriented segregated structure with conductive networks embedded in magnetic matrix was achieved in Fe-based amorphous coatings via Ni-Cu-P functionalization of(Fe_(0.76)Si_(0.09)B_(0.1)P_(0.05))_(99)Nb_(1)amorphous powder precursors and then thermal spraying them onto aluminum(Al)substrate.Benefiting from the unique magnetic-electric structure,the coating@Al composite delivered prominent EMI shielding performance.The EMI shielding effectiveness(SE)of modified coating@Al composite is~41 dB at 8-12 GHz,doubling the value of Al substrate and is 15 dB greater than that of Ni-Cu-P-free coating@Al composite.Microstructure analysis showed that the introduced Ni−Cu−P insertions forcefully suppress the serious oxidation of the magnetic precursors during thermal spraying and form a dense conductive network in the magnetic matrix.Electron holography observation and electromagnetism simulation clarified that the modified coating can effectively trap and attenuate the incident radiations because of the electric loss from Ni−Cu−P conductive network,magnetic loss from Fe-based amorphous coating,and the electromagnetic interactions in the oriented segregated architectures.Moreover,the optimized thermal isolation and mechanical properties brought by structural improvement enable the coating to shield complex parts in thermal shock and mechanical loading environments.Our work gives an insight on the design strategies for metal-based EMI shielding materials and enriches the fundamental understanding of EMI shielding mechanisms.展开更多
Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly ex...Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly exhibit outstanding magnetic and mechanical properties, especially good ductility, after optimally annealing in structure relaxation stage for eliminating the internal stress and homogenizing the microstructure. The alloy exhibits low coercive force of 1.6 A/m, high effective permeability of 15 x 10^3, high fracture strength of 4.2 GPa and good plastic strAln of 1.8%. It is also found that responses of mechanical and magnetic properties to structure relaxation are asynchronous. The glass transition and crystallization will greatly deteriorate the magnetic and mechanical properties. Here we propose a physical picture and demonstrate that the primary structure factors determining magnetic and mechanical properties are different. This work will bring a promising material for application and a new perspective to study the effect of annealing-induced structure relaxation on mechanical and magnetic properties.展开更多
It has been widely accepted that the ultrafast cooling rate is required for the glass formation of amorphous alloys. Here, the larger glass-forming ability (GFA) of Fe76P5(B0.5Si0.3C0.2)19 amorphous alloy was achi...It has been widely accepted that the ultrafast cooling rate is required for the glass formation of amorphous alloys. Here, the larger glass-forming ability (GFA) of Fe76P5(B0.5Si0.3C0.2)19 amorphous alloy was achieved by water quenching at lower cooling rate under argon atmosphere. Cylindrical rods with diameters of 1-2 mm were prepared by water quenching without flux treatment, Cu-mold injection casting, and Cu-mold suction casting, respectively. The influences of the preparation techniques with different cooling rates on GFA, thermal property, and nucleation/growth behavior were examined. The critical diameter of the Fe76P5(B0.5Si0.3C0.2)19 amorphous alloys is 1.7 mm for water quenching while smaller than 1.0 mm for injection casting. Microstructure analysis indicates that the crystallization and solidification processes are quite different between the water-quenched and the injection-cast rods. These findings could deepen fun-damental understanding on the relationship between the cooling rate, techniques, and GFA of Fe-based amorphous alloys.展开更多
Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been syst...Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been systematically studied yet.The interactions between the primary shear bands(PSBs)and secondary shear bands(SSBs)in a ductile Zr-based MG were studied.The residual stress near PSBs can deflect the propagation direction and reduce the propagation velocity of SSBs,which contributes to the plasticity and toughness of the MG.It was demonstrated that the probability and strength of the interactions between PSBs and SSBs would become stronger for MGs with larger Young′s modulus and smaller shear modulus,i.e.,larger Poisson′s ratio.These results are valuable in understanding the plastic deformation of MGs and may be helpful in designing new MGs with desirable mechanical properties.展开更多
基金Project(2012BAC09B02)supported by the 12th Five-Year Key Programs for Science and Technology Development of ChinaProject(2016zzts444)supported by the Financial Support from the Fundament Research Funds for the Central Universities of Central South University,China
文摘To obtain dynamic mechanical properties and failure rule of layered backfill under strain rates from10to80s-1,impactloading test on layered backfill specimens(LBS)was conducted by using split Hopkinson pressure bar system.The results indicatethat positive correlation can be found between dynamic compressive strength and strain rate,as well as between strength increasefactor and strain rate.Dynamic compressive strength of LBS gets higher as the arithmetic average cement-sand ratio increases.Compared with static compressive strength,dynamic compressive strength of LBS is enhanced by11%to163%.In addition,theenergy dissipating rate of LBS lies between that of corresponding single specimens,and it decreases as the average cement contentincreases.Deformation of LBS shows obvious discontinuity,deformation degree of lower strength part of LBS is generally higherthan that of higher strength part.A revised brittle fracture criterion based on the Stenerding-Lehnigk criterion is applied to analyzingthe fracture status of LBS,and the average relevant errors of the3groups between the test results and calculation results are4.80%,3.89%and4.66%,respectively.
基金supported by the National Key Technologies R&D Program of China (No.2006BAB02A03)the Mittal Scientific and Technological Innovation Projects of Central South University during 2008 (No.08MX16)
文摘The experiments on the cemented backfilling perfbrmance of yellow phosphorus slag, including physical-mechanical properties, chemical compositions, optimized proportion, and cementation mechanisms, were carried out to make good use of yellow phosphorus slag as well as tackle with environment problems, safety problems, geological hazards, and high-cost issues during mining in Kaiyang Phosphorus Mine Group, Guizhou. The results show that yellow phosphorus slag can be used as the cement substitute for potential coagulation property. Quicklime, hydrated lime, and other alkaline substances can eliminate the high residual phosphorus to improve the initial strength of backfilling body. The recommended proportions (mass ratio) are 1:1 (yellow phosphorus slag:phosphorous gypsum), 1:4:10 (Portland cement:yellow phosphorus slag:phosphorous gypsum), and 1:4:10 (ultra fine powder:yellow phosphorus slag:phosphorous gypsum) with 5wt% of hydrated lime addition, 60wt% of solid materials, no fly ash addition, and good rheological properties. The hydration reaction involves hydration stage, solidifying stage, and strength stage with Ca(OH)2 as the activating agent. The reaction rates of yellow phosphorus slag, Portland cement, and ultrafine powder hydration with the increase of microstructure stability and initial strength.
基金Supported by the National Key Research Program of China under Grant Nos 2016YFA0401000 and 2016YFA0300604the National Basic Research Program of China under Grant No 2015CB921303+1 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020100the National Natural Science Foundation of China under Grant No11874417
文摘We report a systematic study on magnetotransport properties of the single crystal of cadmium(Cd). When the applied magnetic field B is perpendicular to the current I, the resistivities for both directions(I ‖ a, I ‖ c) show field induced metal-to-insulator-like transitions. The isothermal magnetoresistance(MR) at low temperatures increases approximately as the square of the magnetic field without any sign of saturation, and reaches up to 1140000% and 58000% at T = 2 K and B = 9 T for I ‖ a and I ‖ c, respectively. As the magnetic field rotates to parallel to the current, no sign of negative MR is observed for I ‖ a, while an obvious negative MR appears up to-70% at 2 K and 9 T for the current flowing along the c-axis, and the negative longitudinal MR shows a strong dependence of the electrode position on the single crystal. These results suggest that the negative longitudinal MR is caused by the dislocations formed in the process of crystal growing along the c-axis. Further studies are needed to clarify this point.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2016YFA0401000 and 2016YFA0300604)the National Key Basic Research Program of China(Grant No.2015CB921303)+1 种基金the Strategic Priority Research Program(B)of Chinese Academy of Sciences(Grant No.XDB07020100)the National Natural Science Foundation of China(Grant No.11874417)
文摘We report the transport properties of the CaAs_3 single crystal, which has been predicted to be a candidate for topological nodal-line semimetals. At ambient pressure, CaAs_3 exhibits semiconducting behavior with a small gap, while in some crystals containing tiny defects or impurities, a large "hump" in the resistivity is observed around 230 K. By applying hydrostatic pressure, the samples appear to a tendency towards metallic behavior, but not fully metallized up to 2 GPa.Further high pressure studies are needed to explore the topological characteristics for CaAs_3.
基金Supported by the National Natural Science Foundation of China under Grant No 11704403the National Key Research Program of China under Grant No 2016YFA0401000 and 2016YFA0300604the Strategic Priority Research Program(B)of Chinese Academy of Sciences under Grant No XDB07020100
文摘Devices of electric double-layer transistors (EDLTs) with ionic liquid have been employed as an effective way to dope carriers over a wide range. However, the induced electronic states can hardly survive in the materials after releasing the gate voltage VG at temperatures higher than the melting point of the selected ionic liquid. Here we show that a permanent superconductivity with transition temperature Tc of 24 and 15K is realized hi single crystals and polycrystalline samples of HfNCI and ZrNCI upon applying proper VG's at different temperatures. Reversible change between insulating and superconducting states can be obtained by applying positive and negative VG at low temperature such as 220K, whereas VG 's applied at 250K induce the irreversible superconducting transition. The upper critical field He2 of the superconducting states obtained at different gating temperatures shows similar temperature dependence. We propose a reasonable scenario that partial vacancy of Cl ions could be caused by applying proper VG's at slightly higher processing temperatures, which consequently results in a permanent electron doping in the system. Such a technique shows great potential to systematically tune the bulk electronic state in the similar two-dimensional systems.
基金supported by the National Natural Science Foundation of China(Nos.51601129 and 51401051)the Shanghai Pujiang Program(16PJ1410000)
文摘The electrochemical behaviour and passive film properties of Fe-Cr-Mo-W-C-B-Y amorphous alloys in acetic acid solution were investigated. The potentiodynamic polarisation and Nyquist curves demonstrated that W addition signifi- cantly enhanced the corrosion resistance. Mott-Schottky plots and angle-resolved X-ray photoelectron spectra indicated that passive films with different W contents exhibited dipolar (p-n) semiconducting characteristics separated by fiat-band potentials. The outer and inner oxide layers of the passive films were modified by reducing the acceptor and donor densities. Moreover, W addition favoured the formation of a thicker and more stable passive film to inhibit the dissolution of alloy elements.
基金The work was with the support from the National Key Research and Development Program of China (Grant No. 2017YFB0903902), National Natural Science Foundation of China (Grant Nos. 51601205, 51671035, 51071034, and 51671206), and Ningbo Municipal Nature Science Foundation (Grant No. 2017A610036).
文摘Amorphous powder cores based on spherical (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder and their SiO2 layer prepared by in situ coating insulation process were investigated in detAll. These cores were characterized by scanning electron microscopy and X-ray diffraction analyses, and the results revealed that the surface layer of the amorphous powder was composed of SiO2 with uniform surface coverage. The thickness of the SiO2 insulating layer could be controlled by adjusting the tetraethyl orthosilicate (TEOS) content. By cold-pressing with epoxy resin under a pressure of 1800 MPa, a ring powder core with an outer diameter of 20.3 ram, inner diameter of 12.7 mm, and height of 5.3 mm was prepared. The FeSiBPNb composite core showed its best properties when the TEOS content was 2 mL/g (the volume of TEOS for each gram of (Fe0.76Si0.09B0.1P0.05)99Nb1 amorphous powder, mL/g), which showed good relative permeability in the high-frequency range of up to 10 MHz and a low core loss of 320 W/kg under the maximum magnetic flux density of 0.1 T and frequency of 100 kHz.
基金supported by National Key Research and Development Program of China(No.2016YFB0300500)National Natural Science Foundation of China(No.51771215)+1 种基金Ningbo Major Special Projects of the Plan“Science and Technology Innovation 2025(No.2018B10084)China Postdoctoral Science Foundation(No.2020M673174)。
文摘Manipulation of the internal architecture is essential for electromagnetic interference(EMI)shielding performance of metal-based coatings,which can address the electromagnetic pollution in large-size,complex geometries,and harsh environments.In this work,oriented segregated structure with conductive networks embedded in magnetic matrix was achieved in Fe-based amorphous coatings via Ni-Cu-P functionalization of(Fe_(0.76)Si_(0.09)B_(0.1)P_(0.05))_(99)Nb_(1)amorphous powder precursors and then thermal spraying them onto aluminum(Al)substrate.Benefiting from the unique magnetic-electric structure,the coating@Al composite delivered prominent EMI shielding performance.The EMI shielding effectiveness(SE)of modified coating@Al composite is~41 dB at 8-12 GHz,doubling the value of Al substrate and is 15 dB greater than that of Ni-Cu-P-free coating@Al composite.Microstructure analysis showed that the introduced Ni−Cu−P insertions forcefully suppress the serious oxidation of the magnetic precursors during thermal spraying and form a dense conductive network in the magnetic matrix.Electron holography observation and electromagnetism simulation clarified that the modified coating can effectively trap and attenuate the incident radiations because of the electric loss from Ni−Cu−P conductive network,magnetic loss from Fe-based amorphous coating,and the electromagnetic interactions in the oriented segregated architectures.Moreover,the optimized thermal isolation and mechanical properties brought by structural improvement enable the coating to shield complex parts in thermal shock and mechanical loading environments.Our work gives an insight on the design strategies for metal-based EMI shielding materials and enriches the fundamental understanding of EMI shielding mechanisms.
基金This work was mainly supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0300501, 2017YFB0t)03t)02), and the National Natural Science Foundation of China (Grant Nos. 51601206, 51771159). An- dJng Wang and Chain-tsuan Liu would like to acknowledge lhe support by General Research Fund of Hong Kong under the grant number of City 102013.
文摘Asynchronous responses of mechanical and magnetic properties to structure relaxation for the Fe71Nb6B23 bulk metallic glass were systematically investigated. It is interesting that this ternary alloy can combinedly exhibit outstanding magnetic and mechanical properties, especially good ductility, after optimally annealing in structure relaxation stage for eliminating the internal stress and homogenizing the microstructure. The alloy exhibits low coercive force of 1.6 A/m, high effective permeability of 15 x 10^3, high fracture strength of 4.2 GPa and good plastic strAln of 1.8%. It is also found that responses of mechanical and magnetic properties to structure relaxation are asynchronous. The glass transition and crystallization will greatly deteriorate the magnetic and mechanical properties. Here we propose a physical picture and demonstrate that the primary structure factors determining magnetic and mechanical properties are different. This work will bring a promising material for application and a new perspective to study the effect of annealing-induced structure relaxation on mechanical and magnetic properties.
基金This work was supported by the National Key Research and Development Program of China (Grant No. 2016YFB0300500), National Natural Science Foundation of China (Grant Nos. 51561028 and 51771161), and Ningbo Municipal Natural Science Foundation (Grant No. 2017A610034).
文摘It has been widely accepted that the ultrafast cooling rate is required for the glass formation of amorphous alloys. Here, the larger glass-forming ability (GFA) of Fe76P5(B0.5Si0.3C0.2)19 amorphous alloy was achieved by water quenching at lower cooling rate under argon atmosphere. Cylindrical rods with diameters of 1-2 mm were prepared by water quenching without flux treatment, Cu-mold injection casting, and Cu-mold suction casting, respectively. The influences of the preparation techniques with different cooling rates on GFA, thermal property, and nucleation/growth behavior were examined. The critical diameter of the Fe76P5(B0.5Si0.3C0.2)19 amorphous alloys is 1.7 mm for water quenching while smaller than 1.0 mm for injection casting. Microstructure analysis indicates that the crystallization and solidification processes are quite different between the water-quenched and the injection-cast rods. These findings could deepen fun-damental understanding on the relationship between the cooling rate, techniques, and GFA of Fe-based amorphous alloys.
基金Item Sponsored by China Postdoctoral Science Foundation(2014M551779)Ningbo Municipal Natural Science Foundation of China(2015A610005,2015A610064)One Hundred Talents Program of Chinese Academy of Sciences
文摘Shear bands play a key role in the plastic deformation of metallic glasses(MGs).Even though there are extensive studies on the initiation and propagation of shear bands,the interactions among them have not been systematically studied yet.The interactions between the primary shear bands(PSBs)and secondary shear bands(SSBs)in a ductile Zr-based MG were studied.The residual stress near PSBs can deflect the propagation direction and reduce the propagation velocity of SSBs,which contributes to the plasticity and toughness of the MG.It was demonstrated that the probability and strength of the interactions between PSBs and SSBs would become stronger for MGs with larger Young′s modulus and smaller shear modulus,i.e.,larger Poisson′s ratio.These results are valuable in understanding the plastic deformation of MGs and may be helpful in designing new MGs with desirable mechanical properties.