We are pleased to present this Special Issue of Transactions of Nonferrous Metals Society of China containing selected papers from the First Asian Conference on Aluminum Alloys(ACAA-2013),held in Beijing,China,13–17 ...We are pleased to present this Special Issue of Transactions of Nonferrous Metals Society of China containing selected papers from the First Asian Conference on Aluminum Alloys(ACAA-2013),held in Beijing,China,13–17 October 2013.This conference has been initiated,with approval展开更多
The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow st...The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.展开更多
The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron micr...The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron microscopy,scanning transmission electron microscopy and high resolution transmission electron microscopy.Based on 99.5%TTP diagram,the nose temperature is determined to be about 346℃ with the transformation time of about 0.245 s.The precipitation ofη(MgZn_(2)),T(Al_(2)Zn_(3)Mg_(3)),S(Al_(2)CuMg)or Cu−Zn-rich Y phases can be found depending on isothermal holding temperature and time,and it is described in a time−temperature−precipitation diagram.The size and area fraction of isothermal holding induced phase particles increase,which results in the decrease of hardness of samples after aging.The quantitative contribution to loss of hardness by grain boundaries/subgrain boundaries and dispersoids in the matrix is discussed based on the amount of heterogeneous precipitation related to them.展开更多
Microstructure,mechanical properties and stress corrosion behavior of friction stir welded(FSWed) AlMg-Si alloy were investigated.The average grain sizes of shoulder-affected zone(SAZ),nugget zone(NZ),heat-affected zo...Microstructure,mechanical properties and stress corrosion behavior of friction stir welded(FSWed) AlMg-Si alloy were investigated.The average grain sizes of shoulder-affected zone(SAZ),nugget zone(NZ),heat-affected zone(HAZ) and base material(BM) are 6.03,4.80,168.30 and 127.24 μm,respectively.The thermo-mechanically affected zone(TMAZ),which is generated on the edge position between HAZ and weld nugget zone,has a narrow width of 400 μm.The ultimate tensile strength(UTS) of FSWed joint is 232.20 MPa,about 91.04% with respect to that of base material of 255.06 MPa,and the joint fracture occurs at HAZ on advancing side(AS).The FSWed joint is more susceptive to stress corrosion cracking(SCC) than base material,and the SCC susceptibility increases with the rise in temperature.The residual UTS of FSWed joints in constant loaded tests at the load levels of90,105 and 120 MPa is 89.97%,67.50% and 54.75% of the UST of FSWed joint in air,respectively.The increase of the load in constant loaded tests and four-point beambent tests accelerates the SCC of FSWed joints.展开更多
Offline handwritten mathematical expression recognition is a challenging optical character recognition(OCR)task due to various ambiguities of handwritten symbols and complicated two-dimensional structures.Recent work ...Offline handwritten mathematical expression recognition is a challenging optical character recognition(OCR)task due to various ambiguities of handwritten symbols and complicated two-dimensional structures.Recent work in this area usually constructs deeper and deeper neural networks trained with end-to-end approaches to improve the performance.However,the higher the complexity of the network,the more the computing resources and time required.To improve the performance without more computing requirements,we concentrate on the training data and the training strategy in this paper.We propose a data augmentation method which can generate synthetic samples with new LaTeX notations by only using the official training data of CROHME.Moreover,we propose a novel training strategy called Shuffled Multi-Round Training(SMRT)to regularize the model.With the generated data and the shuffled multi-round training strategy,we achieve the state-of-the-art result in expression accuracy,i.e.,59.74%and 61.57%on CROHME 2014 and 2016,respectively,by using attention-based encoder-decoder models for offline handwritten mathematical expression recognition.展开更多
文摘We are pleased to present this Special Issue of Transactions of Nonferrous Metals Society of China containing selected papers from the First Asian Conference on Aluminum Alloys(ACAA-2013),held in Beijing,China,13–17 October 2013.This conference has been initiated,with approval
基金Projects(2016YFB0300901,2016YFB0300902)supported by the National Key Research and Development Program of ChinaProject(51375503)supported by the National Natural Science Foundation of ChinaProject(2013A017)supported by Guangxi Zhuangzu Autonomous Region of China
文摘The effect of different homogenization treatments on the microstructure and properties of the 7N01 aluminum alloy was investigated using hardness measurements, electrical conductivity measurements, tensile and slow strain rate tests, electron probe microanalysis, optical microscopy, scanning electron microscopy, and transmission electron microscopy. The results revealed that three-step homogenization improved the uniformity of Zr distribution by eliminating segregation of the main alloying elements. During the second homogenization step at 350 °C for 10 h, coarse and strip-like equilibrium η phases formed which assisted the nucleation of Al3Zr dispersoids and reduced the width of the precipitate-free zone of A13Zr dispersoids. As a result, coarse recrystallization was greatly reduced after homogenization at 200 °C, 2 h + 350 °C, 10 h + 470 °C, 12 h, which contributed to improving the overall properties of the 7N01 aluminum alloys.
基金financial supports from the National Key Research and Development Program of China (No. 2016YFB0300901)the Scientific Research Project of Inner Mongolia Colleges and Universities, China (No. NJZY21092)。
文摘The quenching sensitivity of AA7136 alloy was investigated by time−temperature−property(TTP)diagrams,and the heterogeneous precipitation behavior during isothermal holding was investigated using scanning electron microscopy,scanning transmission electron microscopy and high resolution transmission electron microscopy.Based on 99.5%TTP diagram,the nose temperature is determined to be about 346℃ with the transformation time of about 0.245 s.The precipitation ofη(MgZn_(2)),T(Al_(2)Zn_(3)Mg_(3)),S(Al_(2)CuMg)or Cu−Zn-rich Y phases can be found depending on isothermal holding temperature and time,and it is described in a time−temperature−precipitation diagram.The size and area fraction of isothermal holding induced phase particles increase,which results in the decrease of hardness of samples after aging.The quantitative contribution to loss of hardness by grain boundaries/subgrain boundaries and dispersoids in the matrix is discussed based on the amount of heterogeneous precipitation related to them.
基金financially supported by the Scientific Research and Technology Development Program of Guangxi (No.AA16380036)the National Key Research and Development Program of China (Nos.2016YFB0300901 and 2017YFB0306301)+1 种基金the National Natural Science Foundation of China (Nos.51375503 and 51705539)the BaGui Scholars Program of China's Guangxi Zhuang Autonomous Region (No.2013A017)。
文摘Microstructure,mechanical properties and stress corrosion behavior of friction stir welded(FSWed) AlMg-Si alloy were investigated.The average grain sizes of shoulder-affected zone(SAZ),nugget zone(NZ),heat-affected zone(HAZ) and base material(BM) are 6.03,4.80,168.30 and 127.24 μm,respectively.The thermo-mechanically affected zone(TMAZ),which is generated on the edge position between HAZ and weld nugget zone,has a narrow width of 400 μm.The ultimate tensile strength(UTS) of FSWed joint is 232.20 MPa,about 91.04% with respect to that of base material of 255.06 MPa,and the joint fracture occurs at HAZ on advancing side(AS).The FSWed joint is more susceptive to stress corrosion cracking(SCC) than base material,and the SCC susceptibility increases with the rise in temperature.The residual UTS of FSWed joints in constant loaded tests at the load levels of90,105 and 120 MPa is 89.97%,67.50% and 54.75% of the UST of FSWed joint in air,respectively.The increase of the load in constant loaded tests and four-point beambent tests accelerates the SCC of FSWed joints.
基金the National Key Research and Development Program of China No.2020YFB1313602.
文摘Offline handwritten mathematical expression recognition is a challenging optical character recognition(OCR)task due to various ambiguities of handwritten symbols and complicated two-dimensional structures.Recent work in this area usually constructs deeper and deeper neural networks trained with end-to-end approaches to improve the performance.However,the higher the complexity of the network,the more the computing resources and time required.To improve the performance without more computing requirements,we concentrate on the training data and the training strategy in this paper.We propose a data augmentation method which can generate synthetic samples with new LaTeX notations by only using the official training data of CROHME.Moreover,we propose a novel training strategy called Shuffled Multi-Round Training(SMRT)to regularize the model.With the generated data and the shuffled multi-round training strategy,we achieve the state-of-the-art result in expression accuracy,i.e.,59.74%and 61.57%on CROHME 2014 and 2016,respectively,by using attention-based encoder-decoder models for offline handwritten mathematical expression recognition.