期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Extracellular vesicles for delivering therapeutic agents in ischemia/reperfusion injury
1
作者 Weihang Zhou xinchi jiang Jianqing Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第6期1-20,共20页
Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even... Ischemia/reperfusion(I/R)injury ismarked by the restriction and subsequent restoration of blood supply to an organ.This process can exacerbate the initial tissue damage,leading to further disorders,disability,and even death.Extracellular vesicles(EVs)are crucial in cell communication by releasing cargo that regulates the physiological state of recipient cells.The development of EVs presents a novel avenue for delivering therapeutic agents in I/R therapy.The therapeutic potential of EVs derived from stem cells,endothelial cells,and plasma in I/R injury has been actively investigated.Therefore,this review aims to provide an overview of the pathological process of I/R injury and the biophysical properties of EVs.We noted that EVs serve as nontoxic,flexible,and multifunctional carriers for delivering therapeutic agents capable of intervening in I/R injury progression.The therapeutic efficacy of EVs can be enhanced through various engineering strategies.Improving the tropism of EVs via surface modification and modulating their contents via preconditioning are widely investigated in preclinical studies.Finally,we summarize the challenges in the production and delivery of EV-based therapy in I/R injury and discuss how it can advance.This review will encourage further exploration in developing efficient EV-based delivery systems for I/R treatment. 展开更多
关键词 Extracellular vesicles Extracellular vesicle engineering Ischemia/reperfusion injury NANOCARRIER Drug delivery
下载PDF
Stem cell-based ischemic stroke therapy:Novel modifications and clinical challenges
2
作者 Yuankai Sun xinchi jiang Jianqing Gao 《Asian Journal of Pharmaceutical Sciences》 SCIE CAS 2024年第1期18-34,共17页
Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and par... Ischemic stroke(IS)causes severe disability and high mortality worldwide.Stem cell(SC)therapy exhibits unique therapeutic potential for IS that differs from current treatments.SC’s cell homing,differentiation and paracrine abilities give hope for neuroprotection.Recent studies on SC modification have enhanced therapeutic effects for IS,including gene transfection,nanoparticle modification,biomaterial modification and pretreatment.Thesemethods improve survival rate,homing,neural differentiation,and paracrine abilities in ischemic areas.However,many problems must be resolved before SC therapy can be clinically applied.These issues include production quality and quantity,stability during transportation and storage,as well as usage regulations.Herein,we reviewed the brief pathogenesis of IS,the“multi-mechanism”advantages of SCs for treating IS,various SC modification methods,and SC therapy challenges.We aim to uncover the potential and overcome the challenges of using SCs for treating IS and convey innovative ideas for modifying SCs. 展开更多
关键词 Ischemic stroke Stem cell therapy Stem cell modification Cell therapy challenge
下载PDF
New idea to promote the clinical applications of stem cells or their extracellular vesicles in central nervous system disorders:Combining with intranasal delivery 被引量:4
3
作者 Yaosheng Li Honghui Wu +3 位作者 xinchi jiang Yunfei Dong Juanjuan Zheng Jianqing Gao 《Acta Pharmaceutica Sinica B》 SCIE CAS CSCD 2022年第8期3215-3232,共18页
The clinical translation of stem cells and their extracellular vesicles(EVs)-based therapy for central nervous system(CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with t... The clinical translation of stem cells and their extracellular vesicles(EVs)-based therapy for central nervous system(CNS) diseases is booming. Nevertheless, the insufficient CNS delivery and retention together with the invasiveness of current administration routes prevent stem cells or EVs from fully exerting their clinical therapeutic potential. Intranasal(IN) delivery is a possible strategy to solve problems as IN route could circumvent the brain-blood barrier non-invasively and fit repeated dosage regimens. Herein, we gave an overview of studies and clinical trials involved with IN route and discussed the possibility of employing IN delivery to solve problems in stem cells or EVs-based therapy. We reviewed relevant researches that combining stem cells or EVs-based therapy with IN administration and analyzed benefits brought by IN route. Finally, we proposed possible suggestions to facilitate the development of IN delivery of stem cells or EVs. 展开更多
关键词 Stem cells Extracellular vesicles Central nervous system disorders INTRANASAL Clinical translation STROKE Neurodegenerative disease GLIOMA
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部