期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Microstructure and properties of as-cast Cu-Cr-Zr alloys with lanthanum addition 被引量:8
1
作者 Jilin Li Lili Chang +2 位作者 Shengli Li xinde zhu Zhongxin An 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第4期424-429,共6页
Cu-0.45 Cr-0.2 Zr-xLa(x = 0-0.48) alloys were prepared by vacuum casting. The effects of La addition and orientation on the microstructure and properties of the as-cast alloy were investigated by an optical microsco... Cu-0.45 Cr-0.2 Zr-xLa(x = 0-0.48) alloys were prepared by vacuum casting. The effects of La addition and orientation on the microstructure and properties of the as-cast alloy were investigated by an optical microscope, a scanning electron microscope with an energy dispersive X-ray spectrometer, a tensile testing machine and an electrical conductivity tester. The result shows that the addition of La significantly refines the columnar grainsize and decreases the secondary dendrite arm spacing. Trace addition of La improves the room temperature ultimate tensile strength,elongation and electrical conductivity mainly by purifying during melting and casting. The ultimate tensile strength, elongation and electrical conductivity significantly decrease with the increase of La content due to formation of coarse particles and oxides, which severely harm the performance of the Cu-0.45 Cr-0.2 Zr-xLa alloys. The Cu-0.45 Cr-0.2 Zr-0.13 La alloy possesses a good combination of room temperature ultimate tensile strength, elongation and electrical conductivity. In addition, room temperature ultimate tensile strength and electrical conductivity along transverse direction of the ingot are higher than that along longitudinal direction,which is mainly ascribed to different distribution of grain boundary and grain orientation. 展开更多
关键词 La Cu-Cr-Zr alloy Orientation Ultimate tensile strength Electrical conductivity Rare earths
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部