期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Coal and gas outburst prediction model based on principal component analysis and improved support vector machine 被引量:1
1
作者 Chaojun Fan xinfeng lai +1 位作者 Haiou Wen Lei Yang 《Geohazard Mechanics》 2023年第4期319-324,共6页
In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data ... In order to predict the coal outburst risk quickly and accurately,a PCA-FA-SVM based coal and gas outburst risk prediction model was designed.Principal component analysis(PCA)was used to pre-process the original data samples,extract the principal components of the samples,use firefly algorithm(FA)to improve the support vector machine model,and compare and analyze the prediction results of PCA-FA-SVM model with BP model,FA-SVM model,FA-BP model and SVM model.Accuracy rate,recall rate,Macro-F1 and model prediction time were used as evaluation indexes.The results show that:Principal component analysis improves the prediction efficiency and accuracy of FA-SVM model.The accuracy rate of PCA-FA-SVM model predicting coal and gas outburst risk is 0.962,recall rate is 0.955,Macro-F1 is 0.957,and model prediction time is 0.312s.Compared with other models,The comprehensive performance of PCA-FA-SVM model is better. 展开更多
关键词 Coal and gas outburst Risk prediction Principal component analysis(PCA) Firefly algorithm(FA) Support vector machine(SVM)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部