Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the d...Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.展开更多
This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch si...This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.展开更多
Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential lands...Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.展开更多
TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element ...TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase.展开更多
Theγ-ray emitting compact symmetric objects(CSOs)PKS 1718-649,NGC 3894,and TXS 0128+554 are lobedominated in the radio emission.In order to investigate theirγ-ray radiation properties,we analyze the~14yr Fermi/LAT o...Theγ-ray emitting compact symmetric objects(CSOs)PKS 1718-649,NGC 3894,and TXS 0128+554 are lobedominated in the radio emission.In order to investigate theirγ-ray radiation properties,we analyze the~14yr Fermi/LAT observation data of the three CSOs.They all show the low luminosity(1041-1043 erg s-1)and no significant variability in theγ-ray band.Theirγ-ray average spectra can be well fitted by a power-law function.These properties ofγ-rays are clearly different from theγ-ray emitting CSOs CTD 135 and PKS 1413+135,for which theγ-rays are produced by a restarted aligned jet.In the L_(γ)-Γ_(γ)plane,the three CSOs are also located at the region occupied by radio galaxies(RGs)while CTD 135 and PKS 1413+135 display a similar feature to blazars.Together with a similar radio emission property toγ-ray emitting RGs Cen A and Fornax A,we speculate that theγ-rays of the three CSOs stem from their extended mini-lobes.The broadband spectral energy distributions of the three CSOs can be well explained by the two-zone leptonic model,where theirγ-rays are produced by the inverse Compton process of the relativistic electrons in extended regions.By extrapolating the observed Fermi/LAT spectra to the very high energy band,we find that TXS 0128+554 among the three CSOs may be detected by the Cherenkov Telescope Array in the future.展开更多
Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the pr...Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the prompt emission of GRB 210323A shows a signal-peaked structure and a cutoff power-law model can adequately fit the spectra with E_p=1826±747.More interestingly,it has an extremely long-lasting plateau emission in the X-ray afterglow with a duration of~10^(4)s,and then follows a rapid decay with a decay slope~3.2.This temporal feature is challenging by invoking the external shock mode.In this paper,we suggest that the observed long-lasting X-ray plateau emission is caused by the energy injection of dipole radiation from supra-massive magnetar,and the abrupt decay following the longlasting X-ray plateau emission is explained by supra-massive magnetar collapsing into a black hole.It is the short GRB(SGRB)with the longest X-ray internal plateau emission powered by a supra-massive neutron star.If this is the case,one can estimate the physical parameters of a supra-massive magnetar,and compare with other SGRBs.We also discuss the possible gravitational-wave emission,which is powered by a supra-massive magnetar and its detectability,and the possible kilonova emission,which is powered by r-process and magnetar spin-down to compare with the observed data.展开更多
基金supported by the National Key R&D Program of China(No.2022YFA1602201)。
文摘Accurate measurement of the transverse position of a beam is crucial in particle accelerators because it plays a key role in determining the beam parameters.Existing methods for beam-position measurement rely on the detection of image currents induced on electrodes or narrow-band wake field induced by a beam passing through a cavity-type structure.However,these methods have limitations.The indirect measurement of multiple parameters is computationally complex,requiring external calibration to determine the system parameters in advance.Furthermore,the utilization of the beam signal information is incomplete.Hence,this study proposes a novel method for measuring the absolute electron beam transverse position.By utilizing the geometric relationship between the center position of the measured electron beam and multiple detection electrodes and by analyzing the differences in the arrival times of the beam signals detected by these electrodes,the absolute transverse position of the electron beam crossing the electrode plane can be calculated.This method features absolute position measurement,a position sensitivity coefficient independent of vacuum chamber apertures,and no requirement for a symmetrical detector electrode layout.The feasibility of this method is validated through numerical simulations and beam experiments.
基金supported by the National Key R&D Program(No.2022YFA1602201)。
文摘This paper presents a new technique for measuring the bunch length of a high-energy electron beam at a bunch-by-bunch rate in storage rings.This technique uses the time–frequency-domain joint analysis of the bunch signal to obtain bunch-by-bunch and turn-by-turn longitudinal parameters,such as bunch length and synchronous phase.The bunch signal is obtained using a button electrode with a bandwidth of several gigahertz.The data acquisition device was a high-speed digital oscilloscope with a sampling rate of more than 10 GS/s,and the single-shot sampling data buffer covered thousands of turns.The bunch-length and synchronous phase information were extracted via offline calculations using Python scripts.The calibration coefficient of the system was determined using a commercial streak camera.Moreover,this technique was tested on two different storage rings and successfully captured various longitudinal transient processes during the harmonic cavity debugging process at the Shanghai Synchrotron Radiation Facility(SSRF),and longitudinal instabilities were observed during the single-bunch accumulation process at Hefei Light Source(HLS).For Gaussian-distribution bunches,the uncertainty of the bunch phase obtained using this technique was better than 0.2 ps,and the bunch-length uncertainty was better than 1 ps.The dynamic range exceeded 10 ms.This technology is a powerful and versatile beam diagnostic tool that can be conveniently deployed in high-energy electron storage rings.
基金This research was supported by the National Natural Science Foundation of China(Grant Nos.41972284 and 42090054)This work was also supported by the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant No.SKLGP2020Z005).
文摘Geomorphological features are commonly used to identify potential landslides.Nevertheless,overemphasis on these features could lead to misjudgment.This research proposes a process-oriented approach for potential landslide identification that considers time-dependent behaviors.The method integrates comprehensive remote sensing and geological analysis to qualitatively assess slope stability,and employs numerical analysis to quantitatively calculate aging stability.Specifically,a time-dependent stability calculation method for anticlinal slopes is developed and implemented in discrete element software,incorporating time-dependent mechanical and strength reduction calculations.By considering the time-dependent evolution of slopes,this method highlights the importance of both geomorphological features and time-dependent behaviors in landslide identification.This method has been applied to the Jiarishan slope(JRS)on the Qinghai-Tibet Plateau as a case study.The results show that the JRS,despite having landslide geomorphology,is a stable slope,highlighting the risk of misjudgment when relying solely on geomorphological features.This work provides insights into the geomorphological characterization and evolution history of the JRS and offers valuable guidance for studying slopes with similar landslide geomorphology.Furthermore,the process-oriented method incorporating timedependent evolution provides a means to evaluate potential landslides,reducing misjudgment due to excessive reliance on geomorphological features.
基金supported by the Natural Science Foundation of Zhejiang Province(No.LZY23E050001)the National Natural Science Foundation of China(Nos.52271106,52171120,52001262).
文摘TiZrTaNb-based high-entropy alloys(HEAs)are research frontier of biomedical materials due to their high hardness,good yield strength,excellent wear resistance and corrosion resistance.Sn,as an essential trace element in the human body that plays a significant role in physiological process.It has stable chemical properties and a low elastic modulus.In this study,a new material,TiZrTaNbSn HEAs,was proposed as a potential biomedical alloy.The Ti_(35)Zr_(25)Ta_(15)Nb_(15)Sn_(10)biomedical high-entropy alloys(BHEAs)were successfully prepared through an arc melting furnace and then remelted using a German high-temperature and high-pressure apparatus under GPa-level(4 GPa and 7 GPa).The precipitation behavior of the needle-like HCP-Zr_(5)Sn_(3)phase that precipitates discontinuously at the grain boundary was successfully controlled.The phase constitution,microstructure,and corrosion resistance of the alloy were studied.The results show that the needle-like HCP-Zr_(5)Sn_(3)phase is eliminated and the(Zr,Sn)-rich nano-precipitated phase is precipitated in the microstructure under high pressure,which leads to the narrowing of grain boundaries and consequently improves the corrosion resistance of the alloy.In addition,the formation mechanisms of(Zr,Sn)-rich nanoprecipitates in BHEAs were discussed.More Zr and Sn dissolve in the matrix due to the effect of high pressure,during the cooling process,they precipitate to form a(Zr,Sn)-rich nano-precipitated phase.
基金supported by the National Natural Science Foundation of China(grants 12022305,11973050,and 12203022)。
文摘Theγ-ray emitting compact symmetric objects(CSOs)PKS 1718-649,NGC 3894,and TXS 0128+554 are lobedominated in the radio emission.In order to investigate theirγ-ray radiation properties,we analyze the~14yr Fermi/LAT observation data of the three CSOs.They all show the low luminosity(1041-1043 erg s-1)and no significant variability in theγ-ray band.Theirγ-ray average spectra can be well fitted by a power-law function.These properties ofγ-rays are clearly different from theγ-ray emitting CSOs CTD 135 and PKS 1413+135,for which theγ-rays are produced by a restarted aligned jet.In the L_(γ)-Γ_(γ)plane,the three CSOs are also located at the region occupied by radio galaxies(RGs)while CTD 135 and PKS 1413+135 display a similar feature to blazars.Together with a similar radio emission property toγ-ray emitting RGs Cen A and Fornax A,we speculate that theγ-rays of the three CSOs stem from their extended mini-lobes.The broadband spectral energy distributions of the three CSOs can be well explained by the two-zone leptonic model,where theirγ-rays are produced by the inverse Compton process of the relativistic electrons in extended regions.By extrapolating the observed Fermi/LAT spectra to the very high energy band,we find that TXS 0128+554 among the three CSOs may be detected by the Cherenkov Telescope Array in the future.
基金supported by the Guangxi Science Foundation(grant No.2023GXNSFDA026007)the Program of Bagui Scholars Program(LHJ)。
文摘Theoretically,a supra-massive neutron star or magnetar may be formed after the merger of binary neutron stars.GRB210323A is a short-duration gamma-ray burst(GRB)with a duration of lasting~1 s.The light curve of the prompt emission of GRB 210323A shows a signal-peaked structure and a cutoff power-law model can adequately fit the spectra with E_p=1826±747.More interestingly,it has an extremely long-lasting plateau emission in the X-ray afterglow with a duration of~10^(4)s,and then follows a rapid decay with a decay slope~3.2.This temporal feature is challenging by invoking the external shock mode.In this paper,we suggest that the observed long-lasting X-ray plateau emission is caused by the energy injection of dipole radiation from supra-massive magnetar,and the abrupt decay following the longlasting X-ray plateau emission is explained by supra-massive magnetar collapsing into a black hole.It is the short GRB(SGRB)with the longest X-ray internal plateau emission powered by a supra-massive neutron star.If this is the case,one can estimate the physical parameters of a supra-massive magnetar,and compare with other SGRBs.We also discuss the possible gravitational-wave emission,which is powered by a supra-massive magnetar and its detectability,and the possible kilonova emission,which is powered by r-process and magnetar spin-down to compare with the observed data.