Charged photovoltaic glass produces an electrostatic field.The electrostatic field exerts an electrostatic force on dust particles,thus making more dust particles deposited on the glass.In this paper,the contact elect...Charged photovoltaic glass produces an electrostatic field.The electrostatic field exerts an electrostatic force on dust particles,thus making more dust particles deposited on the glass.In this paper,the contact electrification between the deposited dust particles and the photovoltaic glass is studied.Meanwhile,the surface charge density model of the photovoltaic glass and the electrostatic force of charged particles are analyzed.The results show that with the increasing of the particle impact speed and the inclination angle of the photovoltaic panel,the charges on particles increase to different degrees.Under a given condition,the electrostatic forces acting on the charged particles at different positions above the glass plate form a bell-shaped distribution at a macro level,and present a maximum value in the center of the plate.As the distance between the particle and the charged glass decreases,the electrostatic force exerted on the particle increases significantly and fluctuates greatly.However,its mean value is still higher than the force caused by gravity and the adhesion force,reported by some studies.Therefore,we suggest that photovoltaic glass panels used in the severe wind-sand environment should be made of an anti-static transparent material,which can lessen the dust particles accumulated on the panels.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.12064034 and 11562017)the Leading Talents Program of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)+1 种基金the CAS Light of West China Program(Grant No.XAB2017AW03)the Key Research and Development Program of Ningxia Hui Autonomous Region,China(Grant No.2018BFH03004).
文摘Charged photovoltaic glass produces an electrostatic field.The electrostatic field exerts an electrostatic force on dust particles,thus making more dust particles deposited on the glass.In this paper,the contact electrification between the deposited dust particles and the photovoltaic glass is studied.Meanwhile,the surface charge density model of the photovoltaic glass and the electrostatic force of charged particles are analyzed.The results show that with the increasing of the particle impact speed and the inclination angle of the photovoltaic panel,the charges on particles increase to different degrees.Under a given condition,the electrostatic forces acting on the charged particles at different positions above the glass plate form a bell-shaped distribution at a macro level,and present a maximum value in the center of the plate.As the distance between the particle and the charged glass decreases,the electrostatic force exerted on the particle increases significantly and fluctuates greatly.However,its mean value is still higher than the force caused by gravity and the adhesion force,reported by some studies.Therefore,we suggest that photovoltaic glass panels used in the severe wind-sand environment should be made of an anti-static transparent material,which can lessen the dust particles accumulated on the panels.