期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble 被引量:1
1
作者 Jin-Fa Wang Xiao Liu +1 位作者 Hai Zhao xing-chi chen 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期156-160,共5页
Ensemble learning for anomaly detection of data structured into a complex network has been barely studied due to the inconsistent performance of complex network characteristics and the lack of inherent objective funct... Ensemble learning for anomaly detection of data structured into a complex network has been barely studied due to the inconsistent performance of complex network characteristics and the lack of inherent objective function. We propose the intuitionistic fuzzy set(IFS)-based anomaly detection, a new two-phase ensemble method for anomaly detection based on IFS, and apply it to the abnormal behavior detection problem in temporal complex networks.Firstly, it constructs the IFS of a single network characteristic, which quantifies the degree of membership,non-membership and hesitation of each network characteristic to the defined linguistic variables so that makes the unuseful or noise characteristics become part of the detection. To build an objective intuitionistic fuzzy relationship, we propose a Gaussian distribution-based membership function which gives a variable hesitation degree. Then, for the fuzzification of multiple network characteristics, the intuitionistic fuzzy weighted geometric operator is adopted to fuse multiple IFSs and to avoid the inconsistence of multiple characteristics. Finally, the score function and precision function are used to sort the fused IFS. Finally, we carry out extensive experiments on several complex network datasets for anomaly detection, and the results demonstrate the superiority of our method to state-of-the-art approaches, validating the effectiveness of our method. 展开更多
关键词 NET IFS Anomaly Detection of Complex Networks Based on Intuitionistic Fuzzy Set Ensemble
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部