期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Blind false data injection attacks in smart grids subject to measurement outliers 被引量:1
1
作者 xing-jian ma Huimin Wang 《Journal of Control and Decision》 EI 2022年第4期445-454,共10页
False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,whi... False data injection attacks(FDIAs)can manipulate measurement data from Supervisory Control and Data Acquisition(SCADA)system and threat state estimation in smart grids.Blind FDIAs(BFDIAs)enhance traditional FDIAs,which eliminate the limitation of grasping measurement Jacobian matrix H in advance,but when there are outliers in measurement data,attack performance is degraded.In this paper,improved BFDIAs are proposed.In off-line phase,lowdimensional measurement matrix without outliers calculated by Linear Local Tangent Space Alignment algorithm(LLTSA)is sent into Continuous Deep Belief Network(CDBN)as training data to learn their probability distribution.In on-line phase,real-time low-dimensional measurement matrix with outliers are sent into the trained model as inputs,and outputs are reconstructed by the probability distribution in off-line phase,which eliminates the influence of outliers indirectly.Simulations are implemented on PJM 5-bus and IEEE 14-bus systems to verify the performance of proposed strategy compared with PCA-based BFDIAs. 展开更多
关键词 Smart grids blind false data injection attacks measurement outliers continuous deep belief network linear local tangent space alignment algorithm
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部