Due to its unique electronic structure and special size effect,two-dimensional(2D)nanomaterials have shown great potential far beyond bulk materials in the field of photocatalysis.How to deeply explore the photocataly...Due to its unique electronic structure and special size effect,two-dimensional(2D)nanomaterials have shown great potential far beyond bulk materials in the field of photocatalysis.How to deeply explore the photocatalytic mechanism of 2D nanomaterials and design more efficient 2D semiconductor photocatalysts are research hotspots.This review provides a comprehensive introduction to typical 2D nanomaterials and discusses their current application status in the field of photocatalysis.The effects of material properties such as band structure,morphology,crystal face structure,crystal structure and surface defects on the photocatalytic process are discussed.The main modification methods are highlighted,including doping,noble metal deposition,heterojunction,thickness adjustment,defect engineering,and dye sensitization in 2D material systems.Finally,the future development of 2D nanomaterials is prospected.It is hoped that this paper can provide systematic and useful information for researchers engaged in the field of photocatalysis.展开更多
As the range of applications for molybdenum and its alloys has expanded,the corrosive environment for molybdenum alloys has become more demanding.In the past,the content of doping elements has been studied to investig...As the range of applications for molybdenum and its alloys has expanded,the corrosive environment for molybdenum alloys has become more demanding.In the past,the content of doping elements has been studied to investigate their infl uence on the corrosion performance of titanium–zirconium–molybdenum(TZM)alloys.In this paper,it is considered that the second phase in the alloy is the main factor aff ecting the corrosion performance of TZM alloys.By comparing the corrosion behavior of molybdenum metal and TZM alloy,the eff ect of the secondary phase on corrosion behaviors of TZM alloy has been investigated.The results show that the second phase reduces the corrosion resistance of the TZM alloy.The potential of the second phase is 73.7 mV higher than that of the Mo matrix,which contributes to the formation of microscopic electric couples.Under the action of microscopic electric couples,pitting corrosion is preferentially formed at the interface between the second phase and the matrix,which accelerates the corrosion of the matrix.This paper provides a theoretical basis for the application of TZM alloys in corrosive environments.展开更多
In the past decade, multi-principal element high-entropy alloys (referred to as high-entropy alloys, HEAs) are an emerging alloy material, which has been developed rapidly and has become a research hotspot in the fi e...In the past decade, multi-principal element high-entropy alloys (referred to as high-entropy alloys, HEAs) are an emerging alloy material, which has been developed rapidly and has become a research hotspot in the fi eld of metal materials. It breaks the alloy design concept of one or two principal elements in traditional alloys. It is composed of five or more principal elements, and the atomic percentage (at.%) of each element is greater than 5%but not more than 35%. The high-entropy eff ect caused by the increase of alloy principal elements makes the crystals easy form body-centered cubic or face-centered cubic structures, and may be accompanied by intergranular compounds and nanocrystals, to achieve solid solution strengthening,precipitation strengthening, and dispersion strengthening. The optimized design of alloy composition can make HEAs exhibit much better than traditional alloys such as high-strength steel, stainless steel, copper-nickel alloy, and nickel-based superalloy in terms of high strength, high hardness, high-temperature oxidation resistance, and corrosion resistance. At present,refractory high-entropy alloys (RHEAs) containing high-melting refractory metal elements have excellent room temperature and high-temperature properties, and their potential high-temperature application value has attracted widespread attention in the high-temperature fi eld. This article reviews the research status and preparation methods of RHEAs and analyzes the microstructure in each system and then summarizes the various properties of RHEAs, including high strength, wear resistance, high-temperature oxidation resistance, corrosion resistance, etc., and the common property tuning methods of RHEAs are explained, and the existing main strengthening and toughening mechanisms of RHEAs are revealed. This knowledge will help the on-demand design of RHEAs, which is a crucial trend in future development. Finally, the development and application prospects of RHEAs are prospected to guide future research.展开更多
基金supported by the National Natural Science Foundation of China Youth Program (52204399)the Postdoctoral Research Foundation of China (2021MD703866)+6 种基金the Scientific and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan (2022TD-30)Youth Innovation Team of Shaanxi Universities (2019-2022)Fok Ying Tung Education Foundation (171101)Natural Science Basic Research Program of Shaanxi Province (2022JQ-478)the Scientific Research Program of Youth Innovation Team of Shaanxi (22JP037)the Science and Technology Project of Universities and Institutes StaffServing Enterprises in Xi'an (22GXFW0059)Top Young Talents Project of“Special Support Program for High Level Talents”in Shaanxi Province (2018-2023)。
文摘Due to its unique electronic structure and special size effect,two-dimensional(2D)nanomaterials have shown great potential far beyond bulk materials in the field of photocatalysis.How to deeply explore the photocatalytic mechanism of 2D nanomaterials and design more efficient 2D semiconductor photocatalysts are research hotspots.This review provides a comprehensive introduction to typical 2D nanomaterials and discusses their current application status in the field of photocatalysis.The effects of material properties such as band structure,morphology,crystal face structure,crystal structure and surface defects on the photocatalytic process are discussed.The main modification methods are highlighted,including doping,noble metal deposition,heterojunction,thickness adjustment,defect engineering,and dye sensitization in 2D material systems.Finally,the future development of 2D nanomaterials is prospected.It is hoped that this paper can provide systematic and useful information for researchers engaged in the field of photocatalysis.
基金supported by the Scientifi c and Technological Innovation Team Project of Shaanxi Innovation Capability Support Plan(2022TD-30)the Key R&D Program of Shaanxi Province,China(2021GY-209)+8 种基金the Fok Ying Tung Education Foundation(171101)the Youth Innovation Team of the Shaanxi Universities(2019-2022)Service local special program of education department of the Shaanxi province(21JC016)General Special Scientifi c Research Program of the Shaanxi Provincial Department of Education(21JK0722)Top young talents project of“Special support program for high-level talents”in the Shaanxi Province(2018-2023)National Natural Science Foundation of China(52104382)Major Scientifi c and Technological Projects in Shaanxi Province of China(2020ZDZX04-02-01)Major Special Projects of Science and Technology in Shanxi Province(20191102006)the China Postdoctoral Science Foundation(2021M693878).
文摘As the range of applications for molybdenum and its alloys has expanded,the corrosive environment for molybdenum alloys has become more demanding.In the past,the content of doping elements has been studied to investigate their infl uence on the corrosion performance of titanium–zirconium–molybdenum(TZM)alloys.In this paper,it is considered that the second phase in the alloy is the main factor aff ecting the corrosion performance of TZM alloys.By comparing the corrosion behavior of molybdenum metal and TZM alloy,the eff ect of the secondary phase on corrosion behaviors of TZM alloy has been investigated.The results show that the second phase reduces the corrosion resistance of the TZM alloy.The potential of the second phase is 73.7 mV higher than that of the Mo matrix,which contributes to the formation of microscopic electric couples.Under the action of microscopic electric couples,pitting corrosion is preferentially formed at the interface between the second phase and the matrix,which accelerates the corrosion of the matrix.This paper provides a theoretical basis for the application of TZM alloys in corrosive environments.
基金supported by the Fok Ying Tung Education Foundation(171101)the Youth Innovation Team of Shaanxi Universities(2019-2022)+2 种基金the Top Young Talents Project of"Special Support Program for High Level Talents"in Shaanxi Province(2018-2023)the Key R&D Program of Shaanxi Province,China(2021GY-209)the Service Local Special Program of Education Department of Shaanxi province,China(21JC016)。
文摘In the past decade, multi-principal element high-entropy alloys (referred to as high-entropy alloys, HEAs) are an emerging alloy material, which has been developed rapidly and has become a research hotspot in the fi eld of metal materials. It breaks the alloy design concept of one or two principal elements in traditional alloys. It is composed of five or more principal elements, and the atomic percentage (at.%) of each element is greater than 5%but not more than 35%. The high-entropy eff ect caused by the increase of alloy principal elements makes the crystals easy form body-centered cubic or face-centered cubic structures, and may be accompanied by intergranular compounds and nanocrystals, to achieve solid solution strengthening,precipitation strengthening, and dispersion strengthening. The optimized design of alloy composition can make HEAs exhibit much better than traditional alloys such as high-strength steel, stainless steel, copper-nickel alloy, and nickel-based superalloy in terms of high strength, high hardness, high-temperature oxidation resistance, and corrosion resistance. At present,refractory high-entropy alloys (RHEAs) containing high-melting refractory metal elements have excellent room temperature and high-temperature properties, and their potential high-temperature application value has attracted widespread attention in the high-temperature fi eld. This article reviews the research status and preparation methods of RHEAs and analyzes the microstructure in each system and then summarizes the various properties of RHEAs, including high strength, wear resistance, high-temperature oxidation resistance, corrosion resistance, etc., and the common property tuning methods of RHEAs are explained, and the existing main strengthening and toughening mechanisms of RHEAs are revealed. This knowledge will help the on-demand design of RHEAs, which is a crucial trend in future development. Finally, the development and application prospects of RHEAs are prospected to guide future research.