期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Carbon Balance in an Alpine Steppe in the Qinghai-Tibet Plateau 被引量:31
1
作者 Zhi-Yong Pei Hua Ouyang +1 位作者 Cai-Ping Zhou xing-liang xu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第5期521-526,共6页
Carbon fluxes were measured using a static chamber technique in an alpine steppe in the Qinghai-Tibet Plateau from July 2000 to July 2001. It was shown that carbon emissions decreased in autumn and increased in spring... Carbon fluxes were measured using a static chamber technique in an alpine steppe in the Qinghai-Tibet Plateau from July 2000 to July 2001. It was shown that carbon emissions decreased in autumn and increased in spring of the next year, with higher values in growth seasons than in winters. An exponential correlation (Ecarbon = 0.22(exp(0.09T) + In(0.31P + 1)), R^2 = 0.77, P 〈 0.001) was shown between carbon emissions and environmental factors such as temperature (T) and precipitation (P). Using the daily temperature (T) and total precipitation (R), annual carbon emission from soil to the atmosphere was estimated to be 79.6 g C/m^2, 46% of which was emitted by microbial respiration. Considering an average net primary production of 92.5 g C/m^2 per year within the 2 year experiment, alpine steppes can take up 55.9 g CO2-C/m^2 per year. This indicates that alpine steppes are a distinct carbon sink, although this carbon reservoir was quite small. 展开更多
关键词 alpine grassland carbon balance carbon flux net primary productivity Qinghai-Tibet Plateau
原文传递
Small-scale switch in cover-perimeter relationships of patches indicates shift of dominant species during grassland degradation 被引量:3
2
作者 Ming-Hua Song Johannes HCCornelissen +6 位作者 Yi-Kang Li xing-liang xu Hua-Kun Zhou Xiao-Yong Cui Yan-Fen Wang Rong-Yan xu Qi Feng 《Journal of Plant Ecology》 SCIE CSCD 2020年第6期704-712,共9页
Aims Grasslands are globally threatened by climate changes and unsustainable land-use,which often cause transitions among alternative stable states,and even catastrophic transition to desertification.Spatial vegetatio... Aims Grasslands are globally threatened by climate changes and unsustainable land-use,which often cause transitions among alternative stable states,and even catastrophic transition to desertification.Spatial vegetation patch configurations have been shown to signify such transitions at large spatial scale.Here,we demonstrate how small-scale patch configurations can also indicate state transitions.Methods The whole spatial series of degradation successions were chosen in alpine grasslands characterized as seven typical communities.Patch numbers,and perimeter and cover of each patch were recorded using adjacent quadrats along transects in each type of the communities.Species abundance within each patch was measured.Important Findings Across seven grazing-induced degradation stages in the world’s largest expanse of grassland,from dense ungrazed turf to bare black-soil crust,patch numbers and perimeters first increased as patch cover decreased.Numbers and perimeters then decreased rapidly beyond an intersection point at 68%of initial continuous vegetation cover.Around this point,the vegetation fluctuated back and forth between the sedge-dominated grassland breaking-up phase and the forb-dominated phase,suggesting impending shift of grassland state.This study thus demonstrates how ground-based small-scale vegetation surveys can provide a quantitative,easy-to-use signals for vegetation degradation,with promise for detecting the catastrophic transition to desertification. 展开更多
关键词 grassland degradation state transition Tibetan Plateau trade-off vegetation patchiness
原文传递
Carbon Sequestration in Two Alpine Soils on the Tibetan Plateau
3
作者 Yu-Qiang Tian xing-liang xu +3 位作者 Ming-Hua Song Cai-Ping Zhou Qiong Gao Hua Ouyang 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2009年第9期900-905,共6页
Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon- 14 radioactive label provided by thermonuclear weapon tests (known as bomb-^14C). Soil organic ... Soil carbon sequestration was estimated in a conifer forest and an alpine meadow on the Tibetan Plateau using a carbon- 14 radioactive label provided by thermonuclear weapon tests (known as bomb-^14C). Soil organic matter was physically separated into light and heavy fractions. The concentration spike of bomb-^14C occurred at a soil depth of 4 cm in both the forest soil and the alpine meadow soil. Based on the depth of the bomb-^14C spike, the carbon sequestration rate was determined to be 38.5 g C/m^2 per year for the forest soil and 27.1 g C/m^2 per year for the alpine meadow soil. Considering that more than 60% of soil organic carbon (SOC) is stored in the heavy fraction and the large area of alpine forests and meadows on the Tibetan Plateau, these alpine ecosystems might partially contribute to "the missing carbon sink". 展开更多
关键词 alpine soils bomb carbon carbon sequestration soil organic carbon.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部