Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300-420°C and strain rate range of 0.01-10 s-1.A physically-bas...Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300-420°C and strain rate range of 0.01-10 s-1.A physically-based model was developed to accurately predict the flow stress.Meanwhile,processing maps were established to optimize hot working parameters.It is found that decreasing the strain rate or increasing the deformation temperature reduces the flow stress.The high activation energy is closely related to the pinning of dislocations from Si-containing dispersoids.Moreover,the deformed grains and the Si-containing dispersoids in the matrix are elongated perpendicular to the compression direction,and incomplete dynamic recrystallization(DRX)is discovered on the elongated boundaries in domain with peak efficiency.The flow instability is mainly attributed to the flow localization,brittle fracture of eutectic Si phase,and formation of adiabatic shear band.The optimum hot working window is 380-420°C and 0.03-0.28 s-1.展开更多
基金Project(51375502)supported by the National Natural Science Foundation of ChinaProject(2015CX002)supported by the Innovation-driven Plan in Central South University,China+2 种基金Project(2016RS2006)supported by the Science and Technology Leading Talent in Hunan Province,ChinaProject(Q2015140)supported by the Program of Chang Jiang Scholars of Ministry of Education,ChinaProject(2016JJ1017)supported by the Natural Science Foundation for Distinguished Young Scholars of Hunan Province,China
文摘Isothermal compression experiments were conducted to study the hot deformation behaviors of a Sr-modified Al-Si-Mg alloy in the temperature range of 300-420°C and strain rate range of 0.01-10 s-1.A physically-based model was developed to accurately predict the flow stress.Meanwhile,processing maps were established to optimize hot working parameters.It is found that decreasing the strain rate or increasing the deformation temperature reduces the flow stress.The high activation energy is closely related to the pinning of dislocations from Si-containing dispersoids.Moreover,the deformed grains and the Si-containing dispersoids in the matrix are elongated perpendicular to the compression direction,and incomplete dynamic recrystallization(DRX)is discovered on the elongated boundaries in domain with peak efficiency.The flow instability is mainly attributed to the flow localization,brittle fracture of eutectic Si phase,and formation of adiabatic shear band.The optimum hot working window is 380-420°C and 0.03-0.28 s-1.