Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large vol...Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h.展开更多
Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead ...Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead to high anodic polarization.Here,we present a bio-inspired silk fibroin(SF)coating with amphoteric charges to construct an interface reversible electric field,which manipulates the transfer kinetics of Zn^(2+) and reduces anodic polarization.The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn^(2+) flux via the inter-play between the charged coating and adsorbed ions,endowing the Zn-SF anode with low polarization voltage and stable plating/stripping.Experimental analyses with theo-retical calculations suggest that SF can facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+) and provide nucleation sites for uniform deposition.Consequently,the Zn-SF anode delivers a high-rate performance with low voltage polarization(83 mV at 20 mA cm^(−2)) and excellent stability(1500 h at 1 mA cm^(−2);500 h at 10 mA cm^(−2)),realizing exceptional cumulative capacity of 2.5 Ah cm^(−2).The full cell coupled with Zn_(x)V_(2)O_(5)·nH_(2)O(ZnVO)cathode achieves specific energy of~270.5/150.6 Wh kg^(−1)(at 0.5/10 A g^(−1))with-99.8% Coulombic efficiency and retains~80.3%(at 5.0 A g^(−1))after 3000 cycles.展开更多
Lithium-sulfur batteries(LSBs)have attracted the attention of more and more researchers due to the advantages of high energy density,environmental friendliness,and low production cost.However,the low electronic conduc...Lithium-sulfur batteries(LSBs)have attracted the attention of more and more researchers due to the advantages of high energy density,environmental friendliness,and low production cost.However,the low electronic conductivity of active material and shuttling effect of lithium polysulfides(LiPSs)limit the commercial development of LSBs.To solve these problems,we design a core-shell composite with nitrogen-doped carbon(NC)and two types of selenides(FeSe_(2)-NC@ZnSe-NC).The FeSe_(2)-NC@ZnSe-NC has a strong adsorption capacity,and can effectively adsorb LiPSs.At the same time,it also effectively alleviates the shuttling effect of LiPSs,and improves the utilization of the active substance during the charge/discharge reaction processes.The mechanism involved in FeSe_(2)-NC@ZnSe-NC is demonstrated by both experiments and density-functional theory(DFT)calculations.The electrochemical test results indicate that LSB with S/FeSe_(2)-NC@ZnSe-NC delivers an initial discharge capacity of 1260 mAh·g^(-1)at 0.2C.And after 500 cycles at 1C,the capacity decay rate per cycle is 0.031%,and the capacity retention rate is 85%.The FeSe_(2)-NC@ZnSe-NC core-shell structure verifies a rational strategy to construct an electrode material for high-performance LSBs.展开更多
Nanoporous metal-based catalysts with the specific bicontinuous interconnected ligaments/pores network exhibit highly active performances in application for energy conversion, which represent a broader trend in the de...Nanoporous metal-based catalysts with the specific bicontinuous interconnected ligaments/pores network exhibit highly active performances in application for energy conversion, which represent a broader trend in the design of catalyst materials. These promising nanomaterials commendably provide highly conductive porous morphologies with reduced contact resistances, large electrochemical surface areas with enhanced catalytic efficiency, and controllable synthesis for regulating the performances. Thus, we highlight recent designs of nanoporous metals, alloys, transition metal compounds and hierarchical structures mainly employed in catalysis process. We discuss applied strategies to utilize characteristics of nanoporous metals in the energetic field of catalytic reactions. Moreover, development and evolution of novel controllable synthesis methods are applied in preparation of nanoporous non-noble metals and transition metal compounds. Finally, we present some outlooks and perspectives on the nanoporous metal catalyst and suggest ways for achieving alternative materials in catalysis applications.展开更多
Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-o...Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-of-the-art electrode materials having practical capacities far below their theoretical values.Here we demonstrate that high compatibility between layered transition-metal oxide hosts and hydrated cation guests substantially boost their multi-electron-redox reactions to offer higher capacities and rate capability,based on typical bipolar vanadium oxides preintercalated with hydrated cations(M_(x)V_(2)O_(5)).When seamlessly integrated on Au current microcollectors with a three-dimensional bicontinuous nanoporous architecture that offers high pathways of electron transfer and ion transport,the constituent Zn_(x)V_(2)O_(5) exhibits specific capacity of as high as∼527 mAh g^(−1) at 5 mV s^(−1) and retains∼300 mAh g^(−1) at 200 mV s^(−1) in 1 M ZnSO_(4) aqueous electrolyte,outperforming the M_(x)V_(2)O_(5)(M=Li,Na,K,Mg).This allows aqueous rechargeable zinc-ion microbatteries constructed with symmetric nanoporous Zn_(x)V_(2)O_(5)/Au interdigital microelectrodes as anode and cathode to show high-density energy of∼358 mWh cm^(−3)(a value that is forty-fold higher than that of 4 V/500μAh Li thin film battery)at high levels of power delivery.展开更多
Designing highly active and robust platinum-free electrocatalysts for hydrogen evolution reaction is vital for large-scale and efficient production of hydrogen through electrochemical water splitting.Here,we report no...Designing highly active and robust platinum-free electrocatalysts for hydrogen evolution reaction is vital for large-scale and efficient production of hydrogen through electrochemical water splitting.Here,we report nonprecious intermetallic Cu_(5)Zr clusters that are in situ anchored on hierarchical nanoporous copper(NP Cu/Cu_(5)Zr)for efficient hydrogen evolution in alkaline medium.By virtue of hydroxygenated zirconium atoms activating their nearby Cu-Cu bridge sites with appropriate hydrogenbinding energy,the Cu_(5)Zr clusters have a high electrocatalytic activity toward the hydrogen evolution reaction.Associated with unique architecture featured with steady and bicontinuous nanoporous copper skeleton that facilitates electron transfer and electrolyte accessibility,the self-supported monolithic NP Cu/Cu_(5)Zr electrodes boost violent hydrogen gas release,realizing ultrahigh current density of 500mAcm^(-2) at a low potential of-280mV versus reversible hydrogen electrode,with exceptional stability in 1M KOH solution.The electrochemical properties outperform those of state-of-the-art nonprecious metal electrocatalysts and make them promising candidates as electrodes in water splitting devices.展开更多
基金supported by National Natural Science Foundation of China (No. 51871107, 52130101)Chang Jiang Scholar Program of China (Q2016064)+3 种基金the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Natural Science Foundation of Jilin Province (20200201019JC)the Fundamental Research Funds for the Central Universitiesthe Program for Innovative Research Team (in Science and Technology) in University of Jilin Province
文摘Metallic zinc(Zn)is one of the most attractive multivalent-metal anode materials in post-lithium batteries because of its high abundance,low cost and high theoretical capacity.However,it usually suffers from large voltage polarization,low Coulombic efficiency and high propensity for dendritic failure during Zn stripping/plating,hindering the practical application in aqueous rechargeable zinc-metal batteries(AR-ZMBs).Here we demonstrate that anionic surfactant-assisted in situ surface alloying of Cu and Zn remarkably improves Zn reversibility of 3D nanoporous Zn electrodes for potential use as high-performance AR-ZMB anode materials.As a result of the zincophilic ZnxCuy alloy shell guiding uniform Zn deposition with a zero nucleation overpotential and facilitating Zn stripping via the ZnxCuy/Zn galvanic couples,the self-supported nanoporous ZnxCuy/Zn electrodes exhibit superior dendrite-free Zn stripping/plating behaviors in ambient aqueous electrolyte,with ultralow polarizations under current densities up to 50 mA cm^(‒2),exceptional stability for 1900 h and high Zn utilization.This enables AR-ZMB full cells constructed with nanoporous ZnxCuy/Zn anode and K_(z)MnO_(2)cathode to achieve specific energy of as high as~430 Wh kg^(‒1)with~99.8%Coulombic efficiency,and retain~86%after long-term cycles for>700 h.
基金This work is supported by the National Natural Science Foundation of China(Nos.22275066,521032089,21774046,51871107,52130101 and 52271217)Jilin Provincial Science and Technology Department(20210508046RQ and 20200801057GH)+1 种基金China Postdoctoral Science Foundation(2021T140253 and 2021M691188)the Applied Basic Research Program of Changchun Municipal Science and Technology Project(21ZY22).
文摘Metallic interface engineering is a promising strategy to stabilize Zn anode via promoting Zn^(2+) uniform deposition.However,strong interactions between the coating and Zn^(2+) and sluggish transport of Zn^(2+) lead to high anodic polarization.Here,we present a bio-inspired silk fibroin(SF)coating with amphoteric charges to construct an interface reversible electric field,which manipulates the transfer kinetics of Zn^(2+) and reduces anodic polarization.The alternating positively and negatively charged surface as a build-in driving force can expedite and homogenize Zn^(2+) flux via the inter-play between the charged coating and adsorbed ions,endowing the Zn-SF anode with low polarization voltage and stable plating/stripping.Experimental analyses with theo-retical calculations suggest that SF can facilitate the desolvation of[Zn(H_(2)O)_(6)]^(2+) and provide nucleation sites for uniform deposition.Consequently,the Zn-SF anode delivers a high-rate performance with low voltage polarization(83 mV at 20 mA cm^(−2)) and excellent stability(1500 h at 1 mA cm^(−2);500 h at 10 mA cm^(−2)),realizing exceptional cumulative capacity of 2.5 Ah cm^(−2).The full cell coupled with Zn_(x)V_(2)O_(5)·nH_(2)O(ZnVO)cathode achieves specific energy of~270.5/150.6 Wh kg^(−1)(at 0.5/10 A g^(−1))with-99.8% Coulombic efficiency and retains~80.3%(at 5.0 A g^(−1))after 3000 cycles.
基金financially supported by the National Natural Science Foundation of China(No.52130101)the Project of Science and Technology Development Plan of Jilin Province in China(Nos.20210402058GH and 20220201114GX)。
文摘Lithium-sulfur batteries(LSBs)have attracted the attention of more and more researchers due to the advantages of high energy density,environmental friendliness,and low production cost.However,the low electronic conductivity of active material and shuttling effect of lithium polysulfides(LiPSs)limit the commercial development of LSBs.To solve these problems,we design a core-shell composite with nitrogen-doped carbon(NC)and two types of selenides(FeSe_(2)-NC@ZnSe-NC).The FeSe_(2)-NC@ZnSe-NC has a strong adsorption capacity,and can effectively adsorb LiPSs.At the same time,it also effectively alleviates the shuttling effect of LiPSs,and improves the utilization of the active substance during the charge/discharge reaction processes.The mechanism involved in FeSe_(2)-NC@ZnSe-NC is demonstrated by both experiments and density-functional theory(DFT)calculations.The electrochemical test results indicate that LSB with S/FeSe_(2)-NC@ZnSe-NC delivers an initial discharge capacity of 1260 mAh·g^(-1)at 0.2C.And after 500 cycles at 1C,the capacity decay rate per cycle is 0.031%,and the capacity retention rate is 85%.The FeSe_(2)-NC@ZnSe-NC core-shell structure verifies a rational strategy to construct an electrode material for high-performance LSBs.
基金We wish to thank the National Natural Science Foundation of China (No. 51631004)JLU Science and Technology Innovative Research Team (No. 2017TD-09)the fund of "Worldclass Universities and World-class Disciplines" and the computing resources of High Performance Computing Centers of Jilin University and Jinan, China.
文摘Nanoporous metal-based catalysts with the specific bicontinuous interconnected ligaments/pores network exhibit highly active performances in application for energy conversion, which represent a broader trend in the design of catalyst materials. These promising nanomaterials commendably provide highly conductive porous morphologies with reduced contact resistances, large electrochemical surface areas with enhanced catalytic efficiency, and controllable synthesis for regulating the performances. Thus, we highlight recent designs of nanoporous metals, alloys, transition metal compounds and hierarchical structures mainly employed in catalysis process. We discuss applied strategies to utilize characteristics of nanoporous metals in the energetic field of catalytic reactions. Moreover, development and evolution of novel controllable synthesis methods are applied in preparation of nanoporous non-noble metals and transition metal compounds. Finally, we present some outlooks and perspectives on the nanoporous metal catalyst and suggest ways for achieving alternative materials in catalysis applications.
基金supported by the National Natural Science Foundation of China (Nos. 51871107, 52130101, 51631004)Top-notch Young Talent Program of China (W02070051)+2 种基金Chang Jiang Scholar Program of China (Q2016064)the Program for JLU Science and Technology Innovative Research Team (JLUSTIRT, 2017TD-09)the Fundamental Research Funds for the Central Universities, the Program for Innovative Research Team (in Science and Technology) in University of Jilin Province。
文摘Aqueous multivalent-metal-ion intercalation chemistries hold genuine promise to develop safe and powerful microbatteries for potential use in many miniaturized electronics.However,their development is beset by state-of-the-art electrode materials having practical capacities far below their theoretical values.Here we demonstrate that high compatibility between layered transition-metal oxide hosts and hydrated cation guests substantially boost their multi-electron-redox reactions to offer higher capacities and rate capability,based on typical bipolar vanadium oxides preintercalated with hydrated cations(M_(x)V_(2)O_(5)).When seamlessly integrated on Au current microcollectors with a three-dimensional bicontinuous nanoporous architecture that offers high pathways of electron transfer and ion transport,the constituent Zn_(x)V_(2)O_(5) exhibits specific capacity of as high as∼527 mAh g^(−1) at 5 mV s^(−1) and retains∼300 mAh g^(−1) at 200 mV s^(−1) in 1 M ZnSO_(4) aqueous electrolyte,outperforming the M_(x)V_(2)O_(5)(M=Li,Na,K,Mg).This allows aqueous rechargeable zinc-ion microbatteries constructed with symmetric nanoporous Zn_(x)V_(2)O_(5)/Au interdigital microelectrodes as anode and cathode to show high-density energy of∼358 mWh cm^(−3)(a value that is forty-fold higher than that of 4 V/500μAh Li thin film battery)at high levels of power delivery.
基金This work was supported by the National Natural Science Foundation of China(Nos.51871107 and 51631004)the Top-Notch Young Talent Program of China(W02070051)+3 种基金the Chang Jiang Scholar Program of China(Q2016064)the Program for JLU Science and Technology Innovative Research Team(JLUSTIRT,2017TD-09)the Fundamental Research Funds for the Central Universitiesthe Program for Innovative Research Team(in Science and Technology)in University of Jilin Province.
文摘Designing highly active and robust platinum-free electrocatalysts for hydrogen evolution reaction is vital for large-scale and efficient production of hydrogen through electrochemical water splitting.Here,we report nonprecious intermetallic Cu_(5)Zr clusters that are in situ anchored on hierarchical nanoporous copper(NP Cu/Cu_(5)Zr)for efficient hydrogen evolution in alkaline medium.By virtue of hydroxygenated zirconium atoms activating their nearby Cu-Cu bridge sites with appropriate hydrogenbinding energy,the Cu_(5)Zr clusters have a high electrocatalytic activity toward the hydrogen evolution reaction.Associated with unique architecture featured with steady and bicontinuous nanoporous copper skeleton that facilitates electron transfer and electrolyte accessibility,the self-supported monolithic NP Cu/Cu_(5)Zr electrodes boost violent hydrogen gas release,realizing ultrahigh current density of 500mAcm^(-2) at a low potential of-280mV versus reversible hydrogen electrode,with exceptional stability in 1M KOH solution.The electrochemical properties outperform those of state-of-the-art nonprecious metal electrocatalysts and make them promising candidates as electrodes in water splitting devices.