To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spo...To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback.展开更多
The B7-family inducible costimulator(ICOS)activates phosphoinositide-3 kinase(PI3K)and augments calcium mobilization triggered by the T-cell receptor(TCR).We surprisingly found that the entire cytoplasmic domain of IC...The B7-family inducible costimulator(ICOS)activates phosphoinositide-3 kinase(PI3K)and augments calcium mobilization triggered by the T-cell receptor(TCR).We surprisingly found that the entire cytoplasmic domain of ICOS is dispensable for its costimulation of calcium mobilization.This costimulatory function relies on the unique transmembrane domain(TMD)of ICOS,which promotes association with the tyrosine kinase Lck.TMD-enabled Lck association is also required for p85 recruitment to ICOS and subsequent PI3K activation,and Lck underlies both the bystander and costimulatory signaling activity of ICOS.TMD-replaced ICOS,even with an intact cytoplasmic domain,fails to support T FH development or GC formation in vivo.When transplanted onto a chimeric antigen receptor(CAR),the ICOS TMD enhances interactions between T cells and antigen-presenting target cells.Therefore,by revealing an unexpected function of the ICOS TMD,our study offers a new perspective for the understanding and potential application of costimulation biology.展开更多
Surface states that have a dz2 symmetry around the center of the surface Brillouin zone(BZ)have been regarded common in closely-packed surfaces of rare-earth metals.In this work,we report the electronic structure of d...Surface states that have a dz2 symmetry around the center of the surface Brillouin zone(BZ)have been regarded common in closely-packed surfaces of rare-earth metals.In this work,we report the electronic structure of dhcp La(0001)thin films by ultrahigh energy resolution angle-resolved photoemission spectroscopy(ARPES)and first principle calculations.Our first principle analysis is based on the many-body approach,therefore,density function theory(DFT)combined with dynamic mean-field theory(DMFT).The experimentally observed Fermi surface topology and band structure close to the Fermi energy qualitatively agree with first principle calculations when using a renormalization factor of between 2 and 3 for the DFT bands.Photon energy dependent ARPES measurements revealed clear kZ dependence for the hole-like band around the BZ center,previously regarded as a surface state.The obtained ARPES results and theoretical calculations suggest that the major bands of dhcp La(0001)near the Fermi level originate from the bulk La 5d orbits as opposed to originating from the surface states.展开更多
LaIrIn5 is a reference compound of the heavy-fermion superconductor LaIrIn5.The lack of f electrons in LaIrIn5 indicates that there should not be any f electron participating in the construction of its Fermi surface.T...LaIrIn5 is a reference compound of the heavy-fermion superconductor LaIrIn5.The lack of f electrons in LaIrIn5 indicates that there should not be any f electron participating in the construction of its Fermi surface.Thus the electronic structure comparison between LaIrIn5 and LaIrIn5 provides a good platform to study the properties of f electrons.Here angle-resolved photoemission spectroscopy(ARPES)measurements and density functional theory(DFT)calculations are performed to study the electronic structures of LaIrIn5 and LaIrIn5.We find the valence band structures of the two materials are similar to each other,except for the absence of f bands in LaIrIn5.By analyzing the Fermi crossings of the three conduction bands of the two materials quantitatively,we find the volumes of the electron pocketsαandβaround the M′point become larger from LaIrIn5 to LaIrIn5,while the hole pocketγaround theΓ′point becomes smaller.Together with the calculation results,we confirm that this is mainly originated from the f-electron contribution,while the lattice-constant difference between LaIrIn5 and LaIrIn5 only has a finite influence.We also give a summary of the f-electron character in its related Ce-115 heavy fermion compounds.Our results may be essential for the complete microscopic understanding of the 115 compounds and the related heavy-fermion systems.展开更多
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51775362 and 51805350)the Natural Science Foundation of Shanxi Province(Grant No.201801D221226).
文摘To solve the dead⁃zone in the output flow curve of the proportional flow valve without displacement sensor,a dead⁃zone compensation approach is proposed in this paper.Instead of detection and feedback of the valve spool position,the proposed approach adopted the pressure drop across the valve metering orifice to accomplish the dead⁃zone compensation.The first step was to test and get the_(max)imum output flow,Q_(max),at a preset reference pressure drop,such asΔP_(0).The next step was to construct the target compensation flow curve,which is a line through(0,0)and(ΔP_(0),Q_(max)).Then a compensation law was designed to approach the target curve.However,the research results show that the above strategy caused over⁃compensation once the actual pressure drop deviated fromΔP_(0).Thus a correction coefficient,β,was presented to correct the initial compensation law as the pressure drop deviated fromΔP_(0).For example,the test results indicate that the corrected compensation approach could reduce the dead⁃zone from 53.9%to 3.5%at a pressure drop of 1 MPa;as the pressure drop was increased to 5 MPa,the dead⁃zone was reduced from 51.7%to 3.5%.Therefore,the following conclusions can be drawn:the proposed compensation approach is feasible,which can effectively reduce the dead⁃zone and improve the output flow static performance of the proportional flow valve without spool displacement feedback.
基金This work wasfunded in part by the Ministry of Science and Technology“973"program(Grant No.2014CB542501)the National Natural Science Foundation of China(Grant Nos.81330070,81425011,81621002,and 81761128019)+2 种基金the Tsinghua-Peking Centerfor Life SciencesThis work was also funded in part by the Bill&Melinda Gates Foundationthe Howard Hughes Medical lnstitute.
文摘The B7-family inducible costimulator(ICOS)activates phosphoinositide-3 kinase(PI3K)and augments calcium mobilization triggered by the T-cell receptor(TCR).We surprisingly found that the entire cytoplasmic domain of ICOS is dispensable for its costimulation of calcium mobilization.This costimulatory function relies on the unique transmembrane domain(TMD)of ICOS,which promotes association with the tyrosine kinase Lck.TMD-enabled Lck association is also required for p85 recruitment to ICOS and subsequent PI3K activation,and Lck underlies both the bystander and costimulatory signaling activity of ICOS.TMD-replaced ICOS,even with an intact cytoplasmic domain,fails to support T FH development or GC formation in vivo.When transplanted onto a chimeric antigen receptor(CAR),the ICOS TMD enhances interactions between T cells and antigen-presenting target cells.Therefore,by revealing an unexpected function of the ICOS TMD,our study offers a new perspective for the understanding and potential application of costimulation biology.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFA0303104)the Science Challenge Project(Grant No.TZ2016004)the National Natural Science Foundation of China(Grant Nos.11874330,11774320,U1630248,11504341,11504342)。
文摘Surface states that have a dz2 symmetry around the center of the surface Brillouin zone(BZ)have been regarded common in closely-packed surfaces of rare-earth metals.In this work,we report the electronic structure of dhcp La(0001)thin films by ultrahigh energy resolution angle-resolved photoemission spectroscopy(ARPES)and first principle calculations.Our first principle analysis is based on the many-body approach,therefore,density function theory(DFT)combined with dynamic mean-field theory(DMFT).The experimentally observed Fermi surface topology and band structure close to the Fermi energy qualitatively agree with first principle calculations when using a renormalization factor of between 2 and 3 for the DFT bands.Photon energy dependent ARPES measurements revealed clear kZ dependence for the hole-like band around the BZ center,previously regarded as a surface state.The obtained ARPES results and theoretical calculations suggest that the major bands of dhcp La(0001)near the Fermi level originate from the bulk La 5d orbits as opposed to originating from the surface states.
基金supported by the National Natural Science Foundation of China(Grant Nos.11874330,11774320,U1630248,and 11904334)the National Key Research and Development Program of China(Grant No.2017YFA0303104)+5 种基金the National Key R&D Program of the MOST of China(Grant No.2016YFA0300204)the special fund from Institute of Materials,CAEP(Grant No.TP02201904)the Equipment development fund(Grant No.JZX7Y201901SY00900107)the Science Challenge Project(Grant No.TZ2016004)Part of this research used Beamline 03U of the Shanghai Synchron Radiation Facility,which is supported by ME2 project under contract No.11227902 from National Natural Science Foundation of Chinasupported by“Award for Outstanding Member in Youth Innovation Promotion Association CAS”。
文摘LaIrIn5 is a reference compound of the heavy-fermion superconductor LaIrIn5.The lack of f electrons in LaIrIn5 indicates that there should not be any f electron participating in the construction of its Fermi surface.Thus the electronic structure comparison between LaIrIn5 and LaIrIn5 provides a good platform to study the properties of f electrons.Here angle-resolved photoemission spectroscopy(ARPES)measurements and density functional theory(DFT)calculations are performed to study the electronic structures of LaIrIn5 and LaIrIn5.We find the valence band structures of the two materials are similar to each other,except for the absence of f bands in LaIrIn5.By analyzing the Fermi crossings of the three conduction bands of the two materials quantitatively,we find the volumes of the electron pocketsαandβaround the M′point become larger from LaIrIn5 to LaIrIn5,while the hole pocketγaround theΓ′point becomes smaller.Together with the calculation results,we confirm that this is mainly originated from the f-electron contribution,while the lattice-constant difference between LaIrIn5 and LaIrIn5 only has a finite influence.We also give a summary of the f-electron character in its related Ce-115 heavy fermion compounds.Our results may be essential for the complete microscopic understanding of the 115 compounds and the related heavy-fermion systems.