We report a one‐pot surfactant‐free wet‐chemical reduction approach to the synthesis of palladium/titanium nitride(Pd/TiN)and Pd/carbon(Pd/C)composites,in which^5 nm Pd NPs were uniformly dispersed on TiN or C.In t...We report a one‐pot surfactant‐free wet‐chemical reduction approach to the synthesis of palladium/titanium nitride(Pd/TiN)and Pd/carbon(Pd/C)composites,in which^5 nm Pd NPs were uniformly dispersed on TiN or C.In terms of catalytic performance,Pd/TiN showed enhanced efficiency and stability compared with those of Pd/C and bare TiN in the electrocatalytic hydrodechlorination(EHDC)reaction of 2,4‐dichlorophenol(2,4‐DCP)in aqueous solution.The superior performance of Pd/TiN arises from the promotion effect of TiN.Strong metal‐support interactions modified the electronic structure of Pd,which optimized generation of H*ads and 2,4‐DCP adsorption/activation.The cathode potential plays a vital role in controlling the EHDC efficiency and the product distribution.A working potential of?0.80 V was shown to be optimal for achieving the highest EHDC efficiency and maximizing conversion of 2,4‐DCP to phenol(P).Our studies of the reaction pathway show that EHDC of 2,4‐DCP on Pd/TiN proceeded by 2,4‐DCP→p‐chlorophenol(p‐CP),o‐chlorophenol(o‐CP)→P;however,Pd/TiN presented little selectivity for cleavage of p‐C‐Cl vs o‐C‐Cl.This work presents a new approach to enhancing Pd performance towards EHDC through the effects of a support.The strategy demonstrated here could also be extended to design highly efficient catalysts for other hydrogenation reactions.展开更多
基金supported by the National Natural Science Foundation of China(51508055,51502277)Chongqing Postdoctoral Science Foundation(Xm2016020)+2 种基金China Postdoctoral Science Foundation(2016M602660)Natural Science Foundation of Chongqing Science and Technology Commission(cstc2016jcyjA0154)Innovative Research Team of Chongqing(CXTDG201602014)~~
文摘We report a one‐pot surfactant‐free wet‐chemical reduction approach to the synthesis of palladium/titanium nitride(Pd/TiN)and Pd/carbon(Pd/C)composites,in which^5 nm Pd NPs were uniformly dispersed on TiN or C.In terms of catalytic performance,Pd/TiN showed enhanced efficiency and stability compared with those of Pd/C and bare TiN in the electrocatalytic hydrodechlorination(EHDC)reaction of 2,4‐dichlorophenol(2,4‐DCP)in aqueous solution.The superior performance of Pd/TiN arises from the promotion effect of TiN.Strong metal‐support interactions modified the electronic structure of Pd,which optimized generation of H*ads and 2,4‐DCP adsorption/activation.The cathode potential plays a vital role in controlling the EHDC efficiency and the product distribution.A working potential of?0.80 V was shown to be optimal for achieving the highest EHDC efficiency and maximizing conversion of 2,4‐DCP to phenol(P).Our studies of the reaction pathway show that EHDC of 2,4‐DCP on Pd/TiN proceeded by 2,4‐DCP→p‐chlorophenol(p‐CP),o‐chlorophenol(o‐CP)→P;however,Pd/TiN presented little selectivity for cleavage of p‐C‐Cl vs o‐C‐Cl.This work presents a new approach to enhancing Pd performance towards EHDC through the effects of a support.The strategy demonstrated here could also be extended to design highly efficient catalysts for other hydrogenation reactions.