The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,elec...The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,electrochemical treatments, and immersion tests. The Mg69Zn27Ca4 alloy was found to be absolutely amorphous, and its glass-forming ability decreased with the addition of Y. The Mg68Zn27Ca4Y1 alloy exhibited an ultrahigh compressive strength above 1010 MPa as well as high capacity for plastic strain above 3.1%.Electrochemical and immersion tests revealed that these Y-doped MgeZ neC a alloys had good bio-corrosion resistance in simulated body fluid(SBF) at 37℃. The results of the cytotoxicity test showed high cell viabilities for these alloys, which means good bio-compatibility.展开更多
基金support of the National Natural Science Foundation of China (No. 51271206), Chinathe National Basic Research Program of China (No. 2013 CB632201), Chinathe Program for New Century Excellent Talents in University (No. NCET-11-0554), China
文摘The micro-alloying effects of Y on the microstructure, mechanical properties, and bio-corrosion behavior of Mg69-xZn27Ca4Yx(x= 0, 1, 2 at.%) alloys were investigated through X-ray diffraction, compressive tests,electrochemical treatments, and immersion tests. The Mg69Zn27Ca4 alloy was found to be absolutely amorphous, and its glass-forming ability decreased with the addition of Y. The Mg68Zn27Ca4Y1 alloy exhibited an ultrahigh compressive strength above 1010 MPa as well as high capacity for plastic strain above 3.1%.Electrochemical and immersion tests revealed that these Y-doped MgeZ neC a alloys had good bio-corrosion resistance in simulated body fluid(SBF) at 37℃. The results of the cytotoxicity test showed high cell viabilities for these alloys, which means good bio-compatibility.