期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Photo-rechargeable batteries and supercapacitors:Critical roles of carbon-based functional materials 被引量:1
1
作者 Liqun Wang Lei Wen +5 位作者 Yueyu Tong Sihui Wang xinggang hou Xiaodong An Shi Xue Dou Ji Liang 《Carbon Energy》 CAS 2021年第2期225-252,共28页
As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energ... As a clean and renewable energy source,solar energy is a competitive alternative to replace conventional fossil fuels.Nevertheless,its serious fluctuating nature usually leads to a poor alignment with the actual energy demand.To solve this problem,the direct solar-to-electrochemical energy conversion and storage have been regarded as a feasible strategy.In this context,the development of high-performance integrated devices based on solar energy conversion parts(i.e.,solar cells or photoelectrodes)and electrochemical energy storage units(i.e.,rechargeable batteries or supercapacitors[SCs])has become increasingly necessary and urgent,in which carbon and carbon-based functional materials play a fundamental role in determining their energy conversion/storage performances.Herein,we summarize the latest progress on these integrated devices for solar electricity energy conversion and storage,with special emphasis on the critical role of carbon-based functional materials.First,principles of integrated devices are introduced,especially roles of carbon-based materials in these hybrid energy devices.Then,two major types of important integrated devices,including photovoltaic and photoelectrochemicalrechargeable batteries or SCs,are discussed in detail.Finally,key challenges and opportunities in the future development are also discussed.By this review,we hope to pave an avenue toward the development of stable and efficient devices for solar energy conversion and storage. 展开更多
关键词 carbon-based materials electrochemical energy storage integrated devices photoelectric conversion solar energy
下载PDF
Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
2
作者 Ruijing Zhang Xiaoli Liu +1 位作者 xinggang hou Bin Liao 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第4期82-88,共7页
Nitrogen-doped TiO2 nanotubes(TNTs)were prepared by ion implantation and anodic oxidation.The prepared samples were applied in photocatalytic(PC)oxidation of methyl blue,rhodamine B,and bisphenol A under light irradia... Nitrogen-doped TiO2 nanotubes(TNTs)were prepared by ion implantation and anodic oxidation.The prepared samples were applied in photocatalytic(PC)oxidation of methyl blue,rhodamine B,and bisphenol A under light irradiation.To explore the influence of doped ions on the band and electronic structure of TiO2,computer simulations were performed using the VASP code implementing spin-polarized density functional theory(DFT).Both substitutional and interstitial nitrogen atoms were considered.The experimental and computational results propose that the electronic structure of TiO2 was modified because of the emergence of impurity states in the band gap by introducing nitrogen into the lattice,leading to the absorption of visible light.The synergy effects of tubular structures and doped nitrogen ions were responsible for highly efficient and stable PC activities induced by visible and ultraviolet(UV)light. 展开更多
关键词 PHOTOCATALYTIC activities nitrogen ion IMPLANTATION TiO2 NANOTUBE IMPURITY energy level light irradiation
下载PDF
Photoelectrochemical nitrogen reduction:A step toward achieving sustainable ammonia synthesis
3
作者 Liqun Wang Xiao Yan +6 位作者 Wenping Si Daolan Liu xinggang hou Dejun Li Feng hou Shi Xue Dou Ji Liang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第7期1761-1773,共13页
Industrial NH3 production mainly employs the well‐known Haber‐Bosch(H‐B)process,which is associated with significant energy consumption and carbon emissions.Photoelectrochemical nitro‐gen reduction reaction(PEC‐N... Industrial NH3 production mainly employs the well‐known Haber‐Bosch(H‐B)process,which is associated with significant energy consumption and carbon emissions.Photoelectrochemical nitro‐gen reduction reaction(PEC‐NRR)under ambient conditions is considered a promising alternative to the H‐B process and has been attracting increasing attention owing to its associated energy effi‐ciency and environmentally friendly characteristics.The performance of a PEC‐NRR system,such as the NH_(3) yield,selectivity,and stability,is essentially determined by its key component,the photo‐cathode.In this review,the latest progress in the development of photocathode materials employed in PEC‐NRR is evaluated.The fundamental mechanisms and essential features required for the PEC‐NRR are introduced,followed by a discussion of various types of photocathode materials,such as oxides,sulfides,selenides,black silicon,and black phosphorus.In particular,the PEC‐NRR reac‐tion mechanisms associated with these photocathode materials are reviewed in detail.Finally,the present challenges and future opportunities related to the further development of PEC‐NRR are also discussed.This review aims to improve the understanding of PEC‐NRR photocathode materials while also shedding light on the new concepts and significant innovations in this field. 展开更多
关键词 Nitrogen reduction PHOTOELECTROCHEMISTRY PHOTOCATHODE SUSTAINABILITY Carbon neutrality
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部