期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Experimental study on slurry-induced fracturing during shield tunneling 被引量:1
1
作者 Teng WANG Dajun YUAN +1 位作者 Dalong JIN xinggao li 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第2期333-345,共13页
Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the ... Facial support in slurry shield tunneling is provided by slurry pressure to balance the external earth and water pressure.Hydraulic fracturing may occur and cause a significant decrease in the support pressure if the slurry pressure exceeds the threshold of the soil or rock material,resulting in a serious face collapse accident.Preventing the occurrence of hydraulic fracturing in a slurry shield requires investigating the effects of related influencing factors on the hydraulic fracturing pressure and fracture pattern.In this study,a hydraulic fracturing apparatus was developed to test the slurry-induced fracturing of cohesive soil.The effects of different sample parameters and loading conditions,including types of holes,unconfined compressive strength,slurry viscosity,and axial and circumferential loads,on the fracturing pressure and fracture dip were examined.The results indicate that the fracture dip is mainly affected by the deviator stress.The fracturing pressure increases linearly with the increase in the circumferential pressure,but it is almost independent of the axial pressure.The unconfined compressive strength of soil can reflect its ability to resist fracturing failure.The fracturing pressure increases with an increase in the unconfined compressive strength as well as the slurry viscosity.Based on the test results,an empirical approach was proposed to estimate the fracturing pressure of the soil. 展开更多
关键词 slurry shield tunneling hydraulic fracturing test fracturing pressure fracture dip unconfined compressive strength slurry viscosity
原文传递
Probabilistic analysis of secant piles with random geometric imperfections 被引量:1
2
作者 Yi YANG Dalong JIN +2 位作者 xinggao li Weilin SU Xuyang WANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2021年第3期682-695,共14页
The failure to achieve minimum design overlap between secant piles compromises the ability of a structure to perform as designed,resulting in water leakage or even ground collapse.To establish a more realistic simulat... The failure to achieve minimum design overlap between secant piles compromises the ability of a structure to perform as designed,resulting in water leakage or even ground collapse.To establish a more realistic simulation and provide guidelines for designing a safe and cost-effective secant-pile wall,a three-dimensional model of a secant pile,considering the geometric imperfections of the diameter and direction of the borehole,is introduced.An ultrasonic cross-hole test was performed during the construction of secant piles in a launching shaft in Beijing,China.Based on the test results,the statistical characteristics of the pile diameters and orientation parameters were obtained.By taking the pile diameter D,inclination angleβ,and azimuth angleαas random variables,Monte Carlo simulations were performed to discuss the influence of different design parameters on the probability density functions of the overlap of secant piles.The obtained results show that the randomness of the inclination angle and pile diameter can be well described by a normal distribution,whereas the azimuth angle is more consistent with a uniform distribution.The integrity of the secant-pile wall can be overestimated without considering the uncertainty of geometric imperfections.The failure of the secant-pile wall increases substantially with increasing spatial variability in drilling inclination and diameter.A design flowchart for pile spacing under the target safety level is proposed to help engineers design a safe and economical pile wall. 展开更多
关键词 secant piles ultrasonic cross-hole testing probabilistic analysis reliability-based design random imperfections
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部