期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
TOPIC SPLITTING: A HIERARCHICAL TOPIC MODEL BASED ON NON-NEGATIVE MATRIX FACTORIZATION 被引量:2
1
作者 Rui Liu xingguang wang +3 位作者 Deqing wang Yuan Zuo He Zhang Xianzhu Zheng 《Journal of Systems Science and Systems Engineering》 SCIE EI CSCD 2018年第4期479-496,共18页
Hierarchical topic model has been widely applied in many real applications, because it can build a hierarchy on topics with guaranteeing of topics' quality. Most of traditional methods build a hierarchy by adopting l... Hierarchical topic model has been widely applied in many real applications, because it can build a hierarchy on topics with guaranteeing of topics' quality. Most of traditional methods build a hierarchy by adopting low-level topics as new features to construct high-level ones, which will often cause semantic confusion between low-level topics and high-level ones. To address the above problem, we propose a novel topic model named hierarchical sparse NMF with orthogonal constraint (HSOC), which is based on non-negative matrix factorization and builds topic hierarchy via splitting super-topics into sub-topics. In HSOC, we introduce global independence, local independence and information consistency to constraint the split topics. Extensive experimental results on real-world corpora show that the purposed model achieves comparable performance on topic quality and better performance on semantic feature representation of documents compared with baseline methods. 展开更多
关键词 Hierarchical topic model non-negative matrix factorization hierarchical NMF topic splitting
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部