Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases.The aim of this study was to evaluate the effect of polyethylenimine(PEI)-modified graphene quantum dots(GQDs)ge...Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases.The aim of this study was to evaluate the effect of polyethylenimine(PEI)-modified graphene quantum dots(GQDs)gene vectors on endothelial cell prolifera-tion.The GQDs-cationic polymer gene vectors were synthesized by amidation reaction,and used to deliver pzNF580 gene to Human umbilical vein endothelial cells(HUVECs)for promoting their proliferation.The chemical modification of GQDs can ad-just gene vectors'surface properties and charge distribution,thereby enhancing their interaction with gene molecules,which could effectively compress the pZNF580 gene.The CCK-8 assay showed that the cell viability was higher than 80%at higher vector concentration(40μg/mL),demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles(NPs)having low cytotoxicity.The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay,in which the cell viability of the A-GQDs/pZNF580(94.38±6.39%),C-GQDs-PEI-polylactic acid-co-polyacetic acid(PLGA)/pZNF580(98.65±6.60%)and N-GQDs-PEI-PLGA/pZNF580(90.08±1.60%)groups was significantly higher than that of the Lipofectamine 2000/pzNF580(71.98±3.53%)positive treatment group.The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs.In addition,the gene NPs better promote endothelial cell migration and proliferation.The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groupS were higher than those of Lipofectamine 2000/pDNA treatment group.Modified GQDs possess the potential to serve as efficient gene carriers.They tightly bind gene molecules through charge and other non-covalent interactions,significantly improving the effciency of gene delivery and ensuring the smooth release of genes within the cell.This innovative strategy provides a powerful means to promote endothelial cell proliferation.展开更多
Gene therapy has drawn great attention in the treatments of many diseases,especially for cardiovascular diseases.However,the development of gene carriers with low cytotoxicity and multitargeting function is still a ch...Gene therapy has drawn great attention in the treatments of many diseases,especially for cardiovascular diseases.However,the development of gene carriers with low cytotoxicity and multitargeting function is still a challenge.Herein,the multitargeting REDV-G-TATG-NLS peptide was conjugated to amphiphilic cationic copolymer poly(e-caprolactone-co-3(S)-methyl-morpho-line-2,5-dione)-g-polyethyleneimine(PCLMD-g-PEI)via a heterobifunctional orthopyridyl disulfde-poly(ethylene glycol)-N-hydroxysuccinimide(OPSS-PEG-NHS)linker to prepare PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers with the aim to develop the gene carriers with low cytotoxicity and high transfection efficiency.The multitargeting micelles were prepared from PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers by self-assembly method and used to load pEGFP-ZNF580 plasmids(pDNA)to form gene complexes for enhancing the proliferation and migration of endothelial cells(ECs).The loading pDNA capacity was proved by agarose gel electrophoresis assay.These multitargeting gene com-plexes exhibited low cytotoxicity by 3-(4,-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide assay.The high internalization efficiency of these gene complexes was confirmed by flow cytometry.The results of in vitro transfection demonstrated that these multitargeting gene complexes possessed relatively high transfection effi-ciency.The rapid migration of ECs transfected by these gene complexes was verified by wound healing assay.Owing to ECs-targeting ability,cell-penetrating ability and nuclear targeting capacity of REDV-G-TAT-G-NLS pep-tide,the multitargeting polycationic gene carrier with low cytotoxicity and high transfection efficiency has great potential in gene therapy.展开更多
The authors regret that there was an error in our publication.Considering Lingchuang Bai made great contributions to this work,Xinghong Duo and Lingchuang Bai should be co-first authors,but there was no statement that...The authors regret that there was an error in our publication.Considering Lingchuang Bai made great contributions to this work,Xinghong Duo and Lingchuang Bai should be co-first authors,but there was no statement that“Xinghong Duo and Lingchuang Bai contributed equally to this work”.The authors would like to apologize for any inconvenience caused.展开更多
基金supported by the National Natural Science Foundation of China(NSFC 51963018)the‘Chunhui Plan’cooperative scientific research project of the Ministry of Education(Z2015049)the High-level Talents Project of Qinghai University for Nationalities(2019XJG01).
文摘Endothelial cell proliferation plays an important role in angiogenesis and treatment of related diseases.The aim of this study was to evaluate the effect of polyethylenimine(PEI)-modified graphene quantum dots(GQDs)gene vectors on endothelial cell prolifera-tion.The GQDs-cationic polymer gene vectors were synthesized by amidation reaction,and used to deliver pzNF580 gene to Human umbilical vein endothelial cells(HUVECs)for promoting their proliferation.The chemical modification of GQDs can ad-just gene vectors'surface properties and charge distribution,thereby enhancing their interaction with gene molecules,which could effectively compress the pZNF580 gene.The CCK-8 assay showed that the cell viability was higher than 80%at higher vector concentration(40μg/mL),demonstrating that the GQDs-cationic polymer gene vectors and their gene complex nanoparticles(NPs)having low cytotoxicity.The results of the live/dead cell double staining assay were consistent with those of the CCK-8 assay,in which the cell viability of the A-GQDs/pZNF580(94.38±6.39%),C-GQDs-PEI-polylactic acid-co-polyacetic acid(PLGA)/pZNF580(98.65±6.60%)and N-GQDs-PEI-PLGA/pZNF580(90.08±1.60%)groups was significantly higher than that of the Lipofectamine 2000/pzNF580(71.98±3.53%)positive treatment group.The results of transfection and western blot experiments showed that the vector significantly enhanced the delivery of plasmid to HUVECs and increased the expression of pZNF580 in HUVECs.In addition,the gene NPs better promote endothelial cell migration and proliferation.The cell migration rate and proliferation ability of C-GQDs-PEI-PLGA/pZNF580 and N-GQDs-PEI-PLGA/pZNF580 treatment groupS were higher than those of Lipofectamine 2000/pDNA treatment group.Modified GQDs possess the potential to serve as efficient gene carriers.They tightly bind gene molecules through charge and other non-covalent interactions,significantly improving the effciency of gene delivery and ensuring the smooth release of genes within the cell.This innovative strategy provides a powerful means to promote endothelial cell proliferation.
基金This project was supported by the National Natural Science Foundation of China(Grant Nos.51673145,51873149,21875157 and 51963018)the National Key Research and Development Program of China(Grant No.2016YFC1100300)the International Science and Technology Cooperation Program of China(Grant No.2013DFG52040).
文摘Gene therapy has drawn great attention in the treatments of many diseases,especially for cardiovascular diseases.However,the development of gene carriers with low cytotoxicity and multitargeting function is still a challenge.Herein,the multitargeting REDV-G-TATG-NLS peptide was conjugated to amphiphilic cationic copolymer poly(e-caprolactone-co-3(S)-methyl-morpho-line-2,5-dione)-g-polyethyleneimine(PCLMD-g-PEI)via a heterobifunctional orthopyridyl disulfde-poly(ethylene glycol)-N-hydroxysuccinimide(OPSS-PEG-NHS)linker to prepare PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers with the aim to develop the gene carriers with low cytotoxicity and high transfection efficiency.The multitargeting micelles were prepared from PCLMD-g-PEI-PEG-REDV-G-TAT-G-NLS copolymers by self-assembly method and used to load pEGFP-ZNF580 plasmids(pDNA)to form gene complexes for enhancing the proliferation and migration of endothelial cells(ECs).The loading pDNA capacity was proved by agarose gel electrophoresis assay.These multitargeting gene com-plexes exhibited low cytotoxicity by 3-(4,-dimethylthia-zol-2-yl)-2,5-diphenyltetrazolium bromide assay.The high internalization efficiency of these gene complexes was confirmed by flow cytometry.The results of in vitro transfection demonstrated that these multitargeting gene complexes possessed relatively high transfection effi-ciency.The rapid migration of ECs transfected by these gene complexes was verified by wound healing assay.Owing to ECs-targeting ability,cell-penetrating ability and nuclear targeting capacity of REDV-G-TAT-G-NLS pep-tide,the multitargeting polycationic gene carrier with low cytotoxicity and high transfection efficiency has great potential in gene therapy.
文摘The authors regret that there was an error in our publication.Considering Lingchuang Bai made great contributions to this work,Xinghong Duo and Lingchuang Bai should be co-first authors,but there was no statement that“Xinghong Duo and Lingchuang Bai contributed equally to this work”.The authors would like to apologize for any inconvenience caused.