期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mixed phase sodium manganese oxide as cathode for enhanced aqueous zinc-ion storage 被引量:2
1
作者 Xinyu Wang xinghua qin +3 位作者 Qiongqiong Lu Mingming Han Ahmad Omar Daria Mikhailova 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2214-2220,共7页
Aqueous zinc-ion batteries have been regarded as a promising alternative to large-scale energy storage, due to associated low-cost, improved safety and environmental friendliness. However, a high-performance cathode m... Aqueous zinc-ion batteries have been regarded as a promising alternative to large-scale energy storage, due to associated low-cost, improved safety and environmental friendliness. However, a high-performance cathode material for both rate capability and specific capacity is still a challenge. One kind of the more promising candidates are sodium manganese oxide(NMO) materials, although they suffer from individual issues and need to be further improved. Herein, we present a novel mixed phase NMO material composed of nearly equal amounts of Na(0.55)Mn2O4 and Na(0.7)MnO(2.05). The structured configuration with particle size of 200–500 nm is found to be beneficial towards improving the ion diffusion rate during the charge/discharge process. Compared with Na(0.7)MnO(2.05) and Na(0.55)Mn2O4, the mixed phase NMO demonstrates an enhanced rate capability and excellent long-term cycling stability with a capacity retention of 83% after 800 cycles. More importantly, the system also delivers an impressive energy density and power density, as 378 W·h·kg^-1 at 68.7 W·kg^-1, or 172 W·h·kg^-1 at 1705 W·kg^-1. The superior electrochemical performance is ascribed to the fast Zn^2+ diffusion rate because of a large ratio of capacitive contribution(63.9% at 0.9 m V·s^-1). Thus, the mixed phase route provides a novel strategy to enhance electrochemical performance, enabling mixed phase NMO as very promising material towards large-scale energy-storage applications. 展开更多
关键词 Aqueous zinc-ion battery Sodium manganese oxide Mixed phase High energy density
下载PDF
Vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating for high performance zinc-ion batteries
2
作者 Lin Zhang xinghua qin +3 位作者 Lang Wang Zifang Zhao Liwei Mi Qiongqiong Lu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第9期1244-1253,共10页
Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity,flexible layered structure and abundant resources.However,cathodes are susceptible to the coll... Vanadium oxides as cathode for zinc-ion batteries have attracted much attention because of their high theoretical capacity,flexible layered structure and abundant resources.However,cathodes are susceptible to the collapse of their layered structure and the dissolution of vanadium after repeated long cycles,which worsen their capacities and cycling stabilities.Herein,a synergistic engineering of calcium-ion intercalation and polyaniline coating was developed to achieve the superior electrochemical performance of vanadium pentoxide for zinc-ion batteries.The pre-intercalation of calcium-ion between vanadium pentoxide layers as pillars increase the crystal structure’s stability,while the polyaniline coating on the cathodes improves the conductivity and inhibits the dissolution of vanadium.This synergistic engineering enables that the battery system based-on the polyaniline coated calcium vanadate cathode to deliver a high capacity of 406.4 mAh·g^(−1)at 1 A·g^(−1),an ultralong cycle life over 6000 cycles at 10 A·g^(−1)with 93%capacity retention and high-rate capability.The vanadium oxide cathode with synergistic engineering of calcium-ion intercalation and polyaniline coating was verified to effectively improve the electrochemical performance of zinc-ion batteries. 展开更多
关键词 zinc-ion battery CaV8O_(2)0 polyaniline coating synergistic engineering high capacity long durability
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部