期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Effect of cold stratification on the temperature range for germination of Pinus koraiensis 被引量:1
1
作者 Yuan Song xinghuan li +2 位作者 Mingyi Zhang Guowei Xia Chao Xiong 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期221-231,共11页
Germination at low spring temperatures may offer a competitive advantage for the growth and survival of plant species inhabiting temperate forest ecosystems.Pinus koraiensis is a dominant species in temperate forests ... Germination at low spring temperatures may offer a competitive advantage for the growth and survival of plant species inhabiting temperate forest ecosystems.Pinus koraiensis is a dominant species in temperate forests of northeastern China.Its seeds exhibit primary morphophysiological dormancy following dispersal in autumn,limiting natural or artificial regeneration:direct seeding and planting seedlings in spring.The aim of this study was to determine the optimum cold stratification temperature that induces germination to increase towards lower temperatures.Seeds from two populations(Changbaishan and Liangshui)were cold stratified at 0,5 and 10℃.Germination to incubation temperatures(10/5,20/10,25/15 and 30/20℃;14/10 h day/night)were determined after 2 and 4 weeks,and 5.5 and6.5 months of cold stratification.After 5.5 months,approximately 68-91%of seeds from both populations germinated at incubation temperatures of 25/15℃and 30/20℃,regardless of cold stratification temperatures.When the cold stratification temperature was reduced to 0℃and the period increased to 6.5 months,germination at 10/5℃significantly improved,reaching 37%and 64%for the Changbaishan and Liangshui populations,respectively.After 6.5 months of cold stratification,there was a significant linear regression between cold stratification temperatures and germination at10/5℃.The range in temperatures allowing for germination gradually expanded to include lower temperatures with decreasing cold stratification temperatures from 10 to 5℃and further to 0℃. 展开更多
关键词 Cold Stratification temperatures Pinus koraiensis Seed germination Germination temperature range
下载PDF
3D-printed tissue repair patch combining mechanical support and magnetism for controlled skeletal muscle regeneration
2
作者 Xiaocheng Wang Ruibo Zhao +6 位作者 Jian Wang xinghuan li lijuan Jin Wenyu liu lifang Yang Yonghua Zhu Zhikai Tan 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2022年第2期249-264,共16页
Physical forces,such as magnetic and mechanical stimulation,are known to play a significant role in the regulation of cell response.In the present study,a biomimetic regeneration patch was fabricated using E-jet 3 D p... Physical forces,such as magnetic and mechanical stimulation,are known to play a significant role in the regulation of cell response.In the present study,a biomimetic regeneration patch was fabricated using E-jet 3 D printing,which integrates mechanical and magnetic stimulation in a biocompatible"one-pot reaction"strategy when combined with a static magnetic field(SMF).The magneto-based therapeutic regeneration patch induced myoblasts to form aligned and multinucleated myotubes,regulated the expression of myogenic-related genes,and activated the p38αmitogen-activated protein kinase pathway via the initiation of myogenic differentiation.To validate the efficiency of the proposed strategy,the regeneration patch was implanted into mice and exposed to a suitable SMF,which resulted in significantly enhanced in vivo skeletal muscle regeneration.The findings demonstrated that appropriate external physical stimulation provides a suitable biophysical microenvironment that is conducive to tissue regeneration.The method used in the present study represents a promising technique to induce the regeneration of damaged skeletal muscle tis sue. 展开更多
关键词 Functional biomaterials Magnetic actuation Myogenic differentiation Skeletal muscle regeneration 3D printing
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部