Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the ...Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the thermo-hydro-mechanical coupling dynamic response model of heterogeneous saturated porous sediments can be established to study the influence of elastic modulus,density,frequency,and load amplitude changes on the model.Based on the Green-Lindsay generalized thermoelasticity theory and Darcy’s law,the thermo-hydro-mechanical coupled dynamic response model and governing equations of heterogeneous deep-sea sediments with nonlinear elastic modulus and density are established.The analytical solutions of dimensionless vertical displacement,vertical stress,excess pore water pressure,and temperature are obtained by means of normal modal analysis,which are depicted graphically.The results show that the changes of elastic modulus and density have few effects on vertical displacement,vertical stress,and temperature,but have great effects on excess pore water pressure.When the mining machine vibrates,the heterogeneity of deep-sea sediments has great influence on vertical displacement,vertical stress,and excess pore water pressure,but has few effects on temperature.In addition,the vertical displacement,vertical stress,and excess pore water pressure of heterogeneous deep-sea sediments change more gently.The variation trends of physical quantities for heterogeneous and homogeneous deep-sea sediments with frequency and load amplitude are basically the same.The results can provide theoretical guidance for deep-sea mining engineering construction.展开更多
Throughout years,the two-step spin-coating process is the most common method to prepare organic lead halide perovskite materials.However,the short reaction time of dropping the solution at the second step means that P...Throughout years,the two-step spin-coating process is the most common method to prepare organic lead halide perovskite materials.However,the short reaction time of dropping the solution at the second step means that PbI2 cannot be completely transformed into perovskite phase.To solve this problem,we report the introduction of glycine hydrochloride(GlyHCl)into the second step of the two-step spin-coating process to prepare a FA_(0.9)MA_(0.1)PbI_(3-x)%-GlyHCl perovskite material(namely FAMA-x%-GlyHCl,where FA=formamidinium,MA=methylammonium,and x%stands for the molar ratio of GlyHCl added in FA iodide/MA iodide(FAI/MAI)precursor solution).The Cl−ion in GlyHCl assists the formation ofα-phase perovskite,and the-COO−group coordinates with Pb2+cation in a bridging way,making up for the anion vacancy in perovskite lattice and resulting in high absorption intensity.The perovskite solar cells(PSCs)based on FAMA-9%-GlyHCl achieve a long carrier lifetime(527.0 ns),a photoelectric conversion efficiency(PCE)of 19.40%and good thermal stability,maintaining 85.8%of the initial PCE after being continuously heated at 60℃for 500 h.This study helps to solve the problem of incomplete reaction in the two-step spin-coating process and puts forward a new solution for preparing high coverage perovskite films with large grain size.展开更多
基金Project supported by the National Natural Science Foundation of China(Nos.12072309,61603322)。
文摘Due to the influence of deep-sea environment,deep-sea sediments are usually heterogeneous,and their moduli of elasticity and density change as depth changes.Combined with the characteristics of deep-sea sediments,the thermo-hydro-mechanical coupling dynamic response model of heterogeneous saturated porous sediments can be established to study the influence of elastic modulus,density,frequency,and load amplitude changes on the model.Based on the Green-Lindsay generalized thermoelasticity theory and Darcy’s law,the thermo-hydro-mechanical coupled dynamic response model and governing equations of heterogeneous deep-sea sediments with nonlinear elastic modulus and density are established.The analytical solutions of dimensionless vertical displacement,vertical stress,excess pore water pressure,and temperature are obtained by means of normal modal analysis,which are depicted graphically.The results show that the changes of elastic modulus and density have few effects on vertical displacement,vertical stress,and temperature,but have great effects on excess pore water pressure.When the mining machine vibrates,the heterogeneity of deep-sea sediments has great influence on vertical displacement,vertical stress,and excess pore water pressure,but has few effects on temperature.In addition,the vertical displacement,vertical stress,and excess pore water pressure of heterogeneous deep-sea sediments change more gently.The variation trends of physical quantities for heterogeneous and homogeneous deep-sea sediments with frequency and load amplitude are basically the same.The results can provide theoretical guidance for deep-sea mining engineering construction.
基金the National Natural Science Foundation of China(No.22022505)the Fundamental Research Funds for the Central Universities of China(Nos.0205-14380266,0205-14380272,and 0205-14380274)+4 种基金the General project of the Joint Fund of Equipment Pre-research and the Ministry of Education(No.8091B02052407)the Scientific and Technological Innovation Special Fund for Carbon Peak and Carbon Neutrality of Jiangsu Province(No.BK20220008)the Scientific and Technological Achievements Transformation Special Fund of Jiangsu Province(No.BA2023037)the International Collaboration Research Program of Nanjing City(Nos.202201007 and 2022SX00000955)the Gusu Leading Talent Program of Scientific and Technological Innovation and Entrepreneurship of Wujiang District in Suzhou City(No.ZXL2021273).
文摘Throughout years,the two-step spin-coating process is the most common method to prepare organic lead halide perovskite materials.However,the short reaction time of dropping the solution at the second step means that PbI2 cannot be completely transformed into perovskite phase.To solve this problem,we report the introduction of glycine hydrochloride(GlyHCl)into the second step of the two-step spin-coating process to prepare a FA_(0.9)MA_(0.1)PbI_(3-x)%-GlyHCl perovskite material(namely FAMA-x%-GlyHCl,where FA=formamidinium,MA=methylammonium,and x%stands for the molar ratio of GlyHCl added in FA iodide/MA iodide(FAI/MAI)precursor solution).The Cl−ion in GlyHCl assists the formation ofα-phase perovskite,and the-COO−group coordinates with Pb2+cation in a bridging way,making up for the anion vacancy in perovskite lattice and resulting in high absorption intensity.The perovskite solar cells(PSCs)based on FAMA-9%-GlyHCl achieve a long carrier lifetime(527.0 ns),a photoelectric conversion efficiency(PCE)of 19.40%and good thermal stability,maintaining 85.8%of the initial PCE after being continuously heated at 60℃for 500 h.This study helps to solve the problem of incomplete reaction in the two-step spin-coating process and puts forward a new solution for preparing high coverage perovskite films with large grain size.